Multiplexing metahologram along with individual control of plethora and period

From World News
Revision as of 17:57, 21 October 2024 by Divingfreeze85 (talk | contribs) (Created page with "For total Pb, the best predictive models were obtained with BRT (R2 = 0.82 and RMSE 341.80 mg kg-1) followed by SVM (validation, R2 = 0.77 and RMSE 337.96 mg kg-1), and lastly...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

For total Pb, the best predictive models were obtained with BRT (R2 = 0.82 and RMSE 341.80 mg kg-1) followed by SVM (validation, R2 = 0.77 and RMSE 337.96 mg kg-1), and lastly by PLSR (validation, R2 = 0.74 and RMSE 499.04 mg kg-1). The PLSR technique is the most accurate calibration model for bioaccessible Pb with an R2 value of 0.91 and RMSE of 68.27 mg kg-1. The regression analysis indicated that bioaccessible Pb is strongly influenced by organic content, and to a lesser extent, by Fe concentrations. Although PLSR obtained lower accuracy, the model selected many characteristic bands and, thus, provided accurate approach for Pb pollution monitoring.The degradation and mineralization of organic residues are important factors that drive biochemical processes in lake ecosystems. However, the effect of organic matter's degradation on biological nitrogen fixation (BNF) in freshwater lake sediments remains poorly understood. This study investigated the response of sediment nitrogen fixation to the degradations of algae and macrophyte residues through continuous flow mesocosms combined with nifH sequencing analysis and isotope tracing. The results suggested that the active nitrogen fixation of sediments only occurred in the first two weeks of the rapid degradation of organic residues. Degradation of algae and macrophytes residues quickly increased the nifH abundance and the nitrogenase activity (NA) in sediments; however, the maximum NA triggered by algae's degradation (658.2 ± 16.8 ng g-1 day-1) was six times higher than that induced by the degradation of macrophytes residues. There was no significant difference in NA of sediments with the degradation of Potamogeton and Phragmites. Redundancy analysis (RDA) showed that the variation of diazotrophic community in sediment was significantly (p less then 0.01) correlated with the concentrations of SO42- and NH4+ in overlying water and the Fe(II) content and Eh in sediment. Overall, the BNF of sediments can quickly respond to the degradation of organic residues, and the degradation of algae has a stronger promoting effect on the nitrogen fixation in sediments than that of macrophyte residues.Soil aggregates (SA) play crucial roles in soil organic carbon (SOC) sequestration. Different SA fractions contribute differently to the sequestration of SOC. However, few studies have examined the factors controlling SA fractions and associated SOC contents across a watershed. Soil samples were collected at 0-10 cm (surface layer) and 10-20 cm (subsurface layer) from 88 sites across a semi-humid watershed (1.1 km2) on the Loess Plateau, China. These samples were separated into macroaggregates (MA), microaggregates (MI), and silt + clay fractions (SC) by wet-sieving, and SOC content of each fraction was determined. The objectives were to 1) investigate the spatial variability of SA fractions and associated SOC contents as well as their main controls across an entire watershed, and 2) explore the linkages between soil aggregation and SOC sequestration. The bulk and aggregate SOC contents of all SA fractions showed moderate variability, with coefficient of variations of 23.3-31.9%. Geostatistical analysis indicated that the spatial patterns of SA fractions and SOC content varied with aggregate size. From combined Spearman's correlation analysis and structural equation modelling, we found that soil texture was an important control on the spatial variability of all SA fractions and associated SOC contents. Vegetation dynamics and management practices associated with land use were also important controls on MA and MI and their associated SOC contents, especially in the surface layer. However, SC and its associated SOC content were more sensitive to eco-hydrological processes related to topography. Among the land uses, grassland had the greatest SOC sequestration potential. The fine roots of herbs can wrap MI in MA and increase SOC content within MA, which is the primary mechanism responsible for SOC sequestration in grasslands. These results indicate that using vegetation with fine root systems for restoration is a good strategy to increase SOC sequestration in this region.Microplastic pollution in fish is a growing concern worldwide due to its implication for human health. Microplastic contaminations and impacts were investigated in 15 wild-caught commercially important dolphinfish (Coryphaena hippurus L.) from the Eastern Pacific Ocean waters. 1741 suspected particles were extracted from gills, esophagus, stomachs, intestinal tracts, and muscle of C. hippurus. Only 139 of them were identified as microplastics by microscopic inspections and micro-Raman spectroscopic analysis. 10, 34, 51, 35, and 9 out of these 139 microplastic particles were extracted from the gill, esophagus, stomach, intestinal tract, and muscle respectively. Overall, microplastics were detected in 15 out of 15 fish (100%), with ~9.3 pieces per individual on average. The prevalence and high incidence of occurrence of microplastics in the C. hippurus suggest that this pelagic species are at high risk of exposure to microplastic pollutions. The chemical composition of microplastics was made of polyester (PES, 46.8%), polyethylene terephthalate (PET, 38.1%), polypropylene (PP, 7.9%), polystyrene (PS, 5.0%), polyethylene-polypropylene copolymer (PE-PP, 1.4%), and polyethylene (PE, 0.7%). 36.7% and 13.7% of microplastics in the fish were 1-2.5 mm and 2.5-5 mm, respectively. Microplastics of 0.1-0.5 mm and 0.5-1 mm roughly shared equally the remaining 50%. Molecular docking results implied that interaction of the four dominant microplastic polymers (PES, PET, PP, and PS) with cytochrome P450 17A1 would lead to impairment of the reproductive function of C. hippurus. The findings provide insights on the harms from microplastic exposure, along with quantitative information of occurrence, abundance, and distribution of microplastics in the fish tissues, which will ultimately improve understanding of bioavailability and hazards of microplastics to the organisms and beyond to human via food chain transfer.Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.With the rapid growth of population and economy, shortage and mismatch of land and water resources have deepened the need for cropping pattern optimization. In the context of the sustainable development of agriculture, cropping pattern optimization should not only pursue economic benefits, but the consequent environmental effects also deserve equal attention. see more Meanwhile, climate change increases the complexity of balancing conflicts of economic-environmental system by cropping pattern optimization. Therefore, this paper builds a multi-objective programming model for Economic-Environmental Synergistic Optimization for Cropping Pattern under Climate Change (EESO-CP-CC) model, with the goals of economic benefit increment and environmental pollutants emission reduction. The EESO-CP-CC model couples a non-point source pollution input-output model, a one-dimensional water quality model and an economic benefit function into an integrated framework. Fuzzy method was used to solve the optimization model, and the stochallocation vary with different climate change conditions, however, the amplitude of variation is modest, indicating that the model can cope well with the changing environment. The developed model can help achieve synergistic development of economic benefits and environmental effects, and thus promote sustainable development of irrigation areas, and improve the coping capacity of agricultural water and land under climate change, by cropping pattern optimization and planning.Environmental bacteria contain a wealth of untapped potential in the form of biodegradative genes. Leveraging this potential can often be confounded by a lack of understanding of fundamental survival strategies, like dormancy, for environmental stress. Investigating bacterial dormancy-to-degradation relationships enables improvement of bioremediation. Here, we couple genomic and functional assessment to provide context for key attributes of the organic pollutant-degrading strain Rhodococcus biphenylivorans TG9. Whole genome sequencing, pangenome analysis and functional characterization were performed to elucidate important genes and gene products, including antimicrobial resistance, dormancy, and degradation. Rhodococcus as a genus has strong potential for degradation and dormancy, which we demonstrate using R. biphenylivorans TG9 as a model. We identified four Resuscitation-promoting factor (Rpf) encoding genes in TG9 involved in dormancy and resuscitation. We demonstrate that R. biphenylivorans TG9 grows on fourteen typical organic pollutants, and exhibits a robust ability to degrade biphenyl and several congeners of polychlorinated biphenyls. We further induced TG9 into a dormant state and demonstrated pronounced differences in morphology and activity. Together, these results expand our understanding of the genus Rhodococcus and the relationship between dormancy and biodegradation in the presence of environmental stressors.Reservoirs in agricultural catchments retain large proportions of inflowing phosphorus (P). However, the effects of reservoirs on the P cycle and related biogeochemical processes remain unclear. Therefore, this study investigated the degree to which a typical river-transition-reservoir in Southwest China retains both inflowing particulate phosphorus (PP) and dissolved total phosphorus (DTP) and various forms of P in sediments over different water seasons [normal-water season (NWS), low-water season (LWS), and high-water season (HWS)]. The proportions of inflowing PP and DTP retained were 37% and 27%, respectively. This result could be attributed to the absorption of DTP by the large load of intercepted sediment in the dam and the interception of PP itself. The rank of water seasons in terms of the proportion and load of inflowing TP retained was LWS (79%, 336 t P yr-1) > NWS (21%, 43 t P yr-1) > HWS (4%, 27 t P yr-1), which might be due to the high P concentration 0.78 mg L-1 and long hydraulic retention time (HRT) 780 d during the LWS.