Hydrophobized steel meshes can alleviate h2o droplet rolling
Ultimately these results, provided here in the context of PDEs in mathematical finance may be applied to PDEs arising in a variety of different fields and inform new methods of solution.This article elucidates the magnetohydrodynamic 3D Maxwell nanofluid flow with heat absorption/generation effects. PP242 inhibitor The impact of the nonlinear thermal radiation with a chemical reaction is also an added feature of the presented model. The phenomenon of flow is supported by thermal and concentration stratified boundary conditions. The boundary layer set of non-linear PDEs (partial differential equation) are converted into ODEs (ordinary differential equation) with high nonlinearity via suitable transformations. The homotopy analysis technique is engaged to regulate the mathematical analysis. The obtained results for concentration, temperature and velocity profiles are analyzed graphically for various admissible parameters. A comparative statement with an already published article in limiting case is also added to corroborate our presented model. An excellent harmony in this regard is obtained. The impact of the Nusselt number for distinct parameters is also explored and discussed. It is found that the impacts of Brownian motion on the concentration and temperature distributions are opposite. It is also comprehended that the thermally stratified parameter decreases the fluid temperature.We propose an image encryption scheme based on quasi-resonant Rossby/drift wave triads (related to elliptic surfaces) and Mordell elliptic curves (MECs). By defining a total order on quasi-resonant triads, at a first stage we construct quasi-resonant triads using auxiliary parameters of elliptic surfaces in order to generate pseudo-random numbers. At a second stage, we employ an MEC to construct a dynamic substitution box (S-box) for the plain image. The generated pseudo-random numbers and S-box are used to provide diffusion and confusion, respectively, in the tested image. We test the proposed scheme against well-known attacks by encrypting all gray images taken from the USC-SIPI image database. Our experimental results indicate the high security of the newly developed scheme. Finally, via extensive comparisons we show that the new scheme outperforms other popular schemes.The aim of this paper is to examine the role of thermodynamics, and in particular, entropy, for the development of economics within the last 150 years. The use of entropy has not only led to a significant increase in economic knowledge, but also to the emergence of such scientific disciplines as econophysics, complexity economics and quantum economics. Nowadays, an interesting phenomenon can be observed; namely, that rapid progress in economics is being made outside the mainstream. The first significant achievement was the emergence of entropy economics in the early 1970s, which introduced the second law of thermodynamics to considerations regarding production processes. In this way, not only was ecological economics born but also an entropy-based econometric approach developed. This paper shows that non-extensive cross-entropy econometrics is a valuable complement to traditional econometrics as it explains phenomena based on power-law probability distribution and enables econometric model estimation for non-ergodic ill-behaved (troublesome) inverse problems. Furthermore, the entropy economics has accelerated the emergence of modern econophysics and complexity economics. These new directions of research have led to many interesting discoveries that usually contradict the claims of conventional economics. Econophysics has questioned the efficient market hypothesis, while complexity economics has shown that markets and economies function best near the edge of chaos. Quantum economics has already appeared on the horizon, which recognizes money as a fundamental measurement device in the economy. The development of these sciences may indicate the need to reformulate all mainstream economics from its foundations.Here, we introduce a class of Tensor Markov Fields intended as probabilistic graphical models from random variables spanned over multiplexed contexts. These fields are an extension of Markov Random Fields for tensor-valued random variables. By extending the results of Dobruschin, Hammersley and Clifford to such tensor valued fields, we proved that tensor Markov fields are indeed Gibbs fields, whenever strictly positive probability measures are considered. Hence, there is a direct relationship with many results from theoretical statistical mechanics. We showed how this class of Markov fields it can be built based on a statistical dependency structures inferred on information theoretical grounds over empirical data. Thus, aside from purely theoretical interest, the Tensor Markov Fields described here may be useful for mathematical modeling and data analysis due to their intrinsic simplicity and generality.Social network analysis is a multidisciplinary research covering informatics, mathematics, sociology, management, psychology, etc. In the last decade, the development of online social media has provided individuals with a fascinating platform of sharing knowledge and interests. The emergence of various social networks has greatly enriched our daily life, and simultaneously, it brings a challenging task to identify influencers among multiple social networks. The key problem lies in the various interactions among individuals and huge data scale. Aiming at solving the problem, this paper employs a general multilayer network model to represent the multiple social networks, and then proposes the node influence indicator merely based on the local neighboring information. Extensive experiments on 21 real-world datasets are conducted to verify the performance of the proposed method, which shows superiority to the competitors. It is of remarkable significance in revealing the evolutions in social networks and we hope this work will shed light for more and more forthcoming researchers to further explore the uncharted part of this promising field.The inverse Rayleigh distribution finds applications in many lifetime studies, but has not enough overall flexibility to model lifetime phenomena where moderately right-skewed or near symmetrical data are observed. This paper proposes a solution by introducing a new two-parameter extension of this distribution through the use of the half-logistic transformation. The first contribution is theoretical we provide a comprehensive account of its mathematical properties, specifically stochastic ordering results, a general linear representation for the exponentiated probability density function, raw/inverted moments, incomplete moments, skewness, kurtosis, and entropy measures. Evidences show that the related model can accommodate the treatment of lifetime data with different right-skewed features, so far beyond the possibility of the former inverse Rayleigh model. We illustrate this aspect by exploring the statistical inference of the new model. Five classical different methods for the estimation of the model parameters are employed, with a simulation study comparing the numerical behavior of the different estimates.