Medically amyopathic dermatomyositis in the COVID19 widespread
Bioactive compounds found in food and medicinal plants contribute to maintaining health and treating illnesses. For example, hydroxycinnamic acids, such as ferulic acid, are widely present in nature and have several pharmacological properties, including antioxidant, anti-inflammatory, and beneficial effects in parameters of diabetes and hyperlipidemia. In fact, the results of studies in animal models and in vitro experiments of ferulic acid suggest its high therapeutic and preventive potential against several pathological disorders, such as cardiovascular diseases. Therefore, in this review, the bioactivities of ferulic acid on the cardiovascular system are described, including the discussion of the mechanisms of action in the various components of the system. In this review, we discuss the pharmacological properties of this versatile natural product in aspects of cardiovascular health, including cardioprotective and antihypertensive actions, and on the metabolism of lipids, diabetes, and thrombosis.The death toll associated with cancer worldwide is constantly on the increase. Efforts to combat and treat the different forms of this disease is also evolving. Nasopharyngeal carcinoma (NPC) is a lethal form of cancer which is prevalent in Southern China that is normally treated by using radiotherapy. Here we review products obtained from natural sources that have potential cytotoxic and apoptotic properties against NPC. These include grifolin, dihydroartemisinin, luteolin, honokiol, indole-3-carbinol, caffeic acid phenethyl ester, 6-O-angeloylenolin, cucurbitacin E, genistein, helenalin, celastrol, coronarin D, quercetin, trans-cinnamaldehyde, 5'-epimer episilvestrol, silvestrol, arnicolide D, brevilin A and baicalin hydrate. Ethyl acetate extracts of Wedelia chinensis and aqueous extracts of Ajuga bracteosa are also included although the bioactive compounds involved have yet to be identified. The known mechanism of action of these products are discussed. selleck products It is anticipated that one or more of these substances may provide the general population with alternative and cost effective ways to combat this fatal disease.
Metal-organic frameworks (MOFs) exhibited the adjustable aperture, high load capacities, tailorable structures, and excellent biocompatibilities that have used to be as drug delivery carries in cancer therapy. Until now, Zr-MOFs in particular combine optimal stability towards hydrolysis and postsynthetic modification with low toxicity, and are widely studied for its excellent biological performance.
This review comprises the exploration of Zr-MOFs as drug delivery devices (DDSs) with focus on various new methods, including chemotherapy (CT), photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy(SDT), radiotherapy, immunotherapy, gene therapy and related combined therapies, which all generate reactive oxygen species (ROS) to achieve the high efficiency of tumor therapy.
We described and summarized these pertinent examples of the therapeutic mechanisms and highlight the antitumor effects of their biological application both in vitro and in vivo. The perspectives on their future applications and analogous challenge of the Zr-MOFs materials are given.
We described and summarized these pertinent examples of the therapeutic mechanisms and highlight the antitumor effects of their biological application both in vitro and in vivo. The perspectives on their future applications and analogous challenge of the Zr-MOFs materials are given.Among many reactive oxygen species (ROS) which are constantly generated during oxidative stress in cellular membranes, formation and subsequent reactivity of ubiquitous 4-hydroxy-2-nonenal (HNE) with nearby amino acids and lipids represents one of the main research targets in cell physiology in the last decades. Starting from the first synthesis of HNE in 1967, chemistry and reactivity of HNE are constantly under intense scrutiny. This review shows recent advances in the field which are discussed with the special emphasis on revealing intricate details of numerous reaction mechanisms of HNE with lipids and amino acids, with the goal of understanding the reactivity of HNE at the molecular level.During cancer progression, the unrestricted proliferation of cells is supported by the impaired cell death response provoked by certain oncogenes. Both autophagy and apoptosis are the signaling pathways of cell death, which are targeted for cancer treatment. Defects in apoptosis result in reduced cell death and ultimately tumor progression. The tumor cells lacking apoptosis phenomena are killed by ROS- mediated autophagy. The autophagic programmed cell death requires apoptosis protein for inhibiting tumor growth; thus, the interconnection between these two pathways determines the fate of a cell. The cross-regulation of autophagy and apoptosis is an important aspect to modulate autophagy, apoptosis and to sensibilise apoptosis-resistant tumor cells under metabolic stress and might be a rational approach for drug designing strategy for the treatment of cancer. Numerous proteins involved in autophagy have been investigated as the druggable target for anticancer therapy. Several compounds of natural origin have been reported, to control autophagy activity through the PI3K/Akt/mTOR key pathway. Diosgenin, a steroidal sapogenin has emerged as a potential candidate for cancer treatment. It induces ROS-mediated autophagy, inhibits PI3K/Akt/mTOR pathway, and produces cytotoxicity selectively in cancer cells. This review aims to focus on optimal strategies using diosgenin to induce apoptosis by modulating the pathways involved in autophagy regulation and its potential implication in the treatment of various cancer. The discussion has been extended to the medicinal chemistry of semi-synthetic derivatives of diosgenin exhibiting anticancer activity.Triterpenes are a wide and important group of compounds that have several promising pharmacological properties, such as hepatoprotective, anti-inflammatory, anti-HIV, antioxidant, or anticancer activities. Such potent substances can be successfully incorporated in more complex chemical systems e.g. codrugs or pro-drugs that have better pharmacological profile. The codrug is connected with a drug formation pathway to chemically cohere at least two drug molecules to improve positive therapeutic efficiency or decrease side effects. The codrug can be cleaved in the organism to generate effective compounds previously used as substrates. This article presents an overview of codrugs that consist of pentacyclic triterpene moiety that is chosen as a basic codrug moiety due to their wide range of vital activities and another drug molecule fragment. It was found that triterpenoid codrugs are characterized by a wide range of biological activities. However, most of them have anticancer potency.