UNSUPERVISED MULTIMODAL Impression REGISTRATION Using ADAPTATIVE GRADIENT Direction
Reference dosimetry in the presence of a strong magnetic field is challenging. Ionisation chambers have shown to be strongly affected by magnetic fields. There is a need for robust and stable detectors in MRI-guided radiotherapy (MRIgRT). This study investigates the behaviour of the alanine dosimeter in magnetic fields and assess its suitability to act as a reference detector in MRIgRT. Alanine pellets were loaded in a waterproof holder, placed in an electromagnet and irradiated by60Co and 6 MV and 8 MV linac beams over a range of magnetic flux densities. Monte Carlo simulations were performed to calculate the absorbed dose, to water and to alanine, with and without magnetic fields. Combining measurements with simulations, the effect of magnetic fields on alanine response was quantified and a correction factor for the presence of magnetic fields on alanine was determined. This study finds that the response of alanine to ionising radiation is modified when the irradiation is in the presence of a magnetic field. The effect is energy independent and may increase the alanine/EPR signal by 0.2% at 0.35 T and 0.7% at 1.5 T. In alanine dosimetry for MRIgRT, this effect, if left uncorrected, would lead to an overestimate of dose. Accordingly, a correction factor, kQB,Q, is defined. Values are obtained for this correction as a function of magnetic flux density, with a standard uncertainty which depends on the magnetic field and is 0.6% or less. The strong magnetic field has a measurable effect on alanine dosimetry. For alanine which is used to measure absorbed dose to water in a strong magnetic field, but which has been calibrated in the absence of a magnetic field, a small correction to the reported dose is required. With the inclusion of this correction, alanine/EPR is a suitable reference dosimeter for measurements in MRIgRT. Creative Commons Attribution license.Alzheimer's disease is characterized by the accumulation of amyloid and dysfunctional tau protein in the brain along with the final development of dementia. Accumulation of amyloid in the brain was observed 10-20 years before the onset of clinical symptoms by diagnostic methods based on image analysis. This is a serious public health problem, incidence and prevalence being expected to reach epidemic proportions over the next few decades if the disease cannot be prevented or slowed down. Recently, in addition to the strongly developing ischemic etiology of Alzheimer's disease, it is suggested that the gut microbiota may also participate in the development of this disease. The brain and gut are thought to form a network called the "gut-brain-microbiota axis", and it is strongly supported idea that the intestinal microflora can be involved in Alzheimer's disease. Lately, many new studies have been conducted that draw attention to the relationship between Alzheimer's disease and gut microbiota. This review presents a possible relationship between Alzheimer's disease and a microbiome. It is a promising idea for prevention or therapeutic intervention. Modulation of the gut microbiota through a personalized diet or beneficial microflora intervention like pro/prebiotics, changing microbiological partners and their products, including amyloid protein, can become a new treatment for Alzheimer's disease.Aging has become a significant risk factor for several diseases, including breast cancer.Platelet activation and platelet-cancer cell aggregate fractions were found to increase with tumor progression in a mouse model of breast cancer. At advanced stages of tumor development, platelets from mice with breast cancer were hyperreactive to low agonist concentrations and hyporeactive to high ones. Platelet activation and reactivity were strongly associated with breast cancer metastasis in the lungs and extramedullary hematopoiesis in the liver. A greater fraction of platelet aggregates was observed in 4T1-injected mice at the advanced stages of breast cancer. In vitro, platelet activation was elevated after incubation with 4T1 cells, and thrombin-stimulated platelets formed aggregates with 4T1 cells. Neither GPIbα, nor GPIIb/IIIa blocking antibodies, were able to affect platelet-cancer cell aggregation in vitro.The primed circulating platelets became more sensitive to subthreshold stimuli at advanced stages of tumor development, and the formation of platelet-cancer cell aggregates increased with cancer progression. Our findings demonstrate that the age-associated progression of breast cancer cells is connected with increased platelet functioning, and that it can be manifested by the increased number of metastases and extramedullary hematopoiesis in a time-dependent-manner.Distant hybridization refers to the cross between two different species or higher-ranking taxa. It is very significant if the new lineages with genetic variation, fertile ability, and improved characteristics can be established through distant hybridization. However, reproductive barriers are key limitations that must be overcome to establish fertile lineages derived from distant hybridization. In the present review, we discussed how distant hybridization is an important way to form new species by overcoming reproductive barriers and summarized effective measures to overcome reproductive barriers in order to create fertile lineages of fish distant hybridization. In addition, we described the utilization of the fish lineages derived from distant hybridization. Finally, we discussed the relationship between distant hybridization and Mendel's laws, which generally apply to the inbred hybridization. We aim to provide a comprehensive reference for the establishment of fertile fish lineages by overcoming reproductive barriers and to emphasize the significance of fish distant hybridization in the fields of evolutionary biology, reproductive biology and genetic breeding.The management of radioiodine refractory thyroid cancers (RAIR TC) is challenging for the clinician. Tyrosine kinase inhibitors classically prescribed in this setting can fail due to primary or acquired resistance or the necessity of drug withdrawal because of serious or moderate but chronic and deleterious adverse effects. Thus, the concept of redifferentiation strategy, which involves treating patients with one or more drugs capable of restoring radioiodine sensitivity for RAIR TC, has emerged. The area of redifferentiation strategy leads to the creation of new definitions of RAIR TC including persistent non radioiodine-avid patients and 'true' RAIR TC patients. The latter group presents a restored or increased radioiodine uptake in metastatic lesions but with no radiological response on conventional imaging i.e. check details progression of a metastatic disease thus proving that they are 'truly' resistant to the radiation delivered by radioiodine. Unlike these patients, metastatic TC patients with restored radioiodine uptake offer the hope of prolonged remission or even cure of the disease as for radioiodine-avid metastatic TC.