Including the Carboxylate Podium right into a Reddish Seaweed Biorefinery
Post-amputation pain causes great suffering to amputees, but still no effective drugs are available due to its elusive mechanisms. Our previous clinical studies found that surgical removal or radiofrequency treatment of the neuroma at the axotomized nerve stump effectively relieves the phantom pain afflicting patients after amputation. This indicated an essential role of the residual nerve stump in the formation of chronic post-amputation pain (CPAP). However, the molecular mechanism by which the residual nerve stump or neuroma is involved and regulates CPAP is still a mystery. In this study, we found that nociceptors expressed the mechanosensitive ion channel TMEM63A and macrophages infiltrated into the dorsal root ganglion (DRG) neurons worked synergistically to promote CPAP. Histology and qRT-PCR showed that TMEM63A was mainly expressed in mechanical pain-producing non-peptidergic nociceptors in the DRG, and the expression of TMEM63A increased significantly both in the neuroma from amputated patients and ttween nociceptors and macrophages, and that these two factors gang up together to regulate the formation of CPAP. This provides a new insight into the mechanisms underlying CPAP and potential drug targets its treatment.Accurate self-motion perception, which is critical for organisms to survive, is a process involving multiple sensory cues. The two most powerful cues are visual (optic flow) and vestibular (inertial motion). Psychophysical studies have indicated that humans and nonhuman primates integrate the two cues to improve the estimation of self-motion direction, often in a statistically Bayesian-optimal way. In the last decade, single-unit recordings in awake, behaving animals have provided valuable neurophysiological data with a high spatial and temporal resolution, giving insight into possible neural mechanisms underlying multisensory self-motion perception. Here, we review these findings, along with new evidence from the most recent studies focusing on the temporal dynamics of signals in different modalities. We show that, in light of new data, conventional thoughts about the cortical mechanisms underlying visuo-vestibular integration for linear self-motion are challenged. We propose that different temporal component signals may mediate different functions, a possibility that requires future studies.An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. DASA-58 nmr Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.Routine coronal paraffin-sections through the dorsal frontal and parieto-occipital cortex of a total of sixty cases with divergent causes of death were immunohistochemically (IHC) stained with an antibody against TMEM119. Samples of cerebrospinal fluid (CSF) of the same cases were collected by suboccipital needle-puncture, subjected to centrifugation and processed as cytospin preparations stained with TMEM119. Both, cytospin preparations and sections were subjected to computer-assisted density measurements. The density of microglial TMEM119-positive cortical profiles correlated with that of cytospin results and with the density of TMEM119-positive microglial profiles in the medullary layer. There was no statistically significant correlation between the density of medullary TMEM119-positive profiles and the cytospin data. Cortical microglial cells were primarily encountered in supragranular layers I, II, and IIIa and in infragranular layers V and VI, the region of U-fibers and in circumscribed foci or spread in a diffuse manner and high density over the white matter. We have evidence that cortical microglia directly migrate into CSF without using the glympathic pathway. Microglia in the medullary layer shows a strong affinity to the adventitia of deep vessels in the myelin layer. Selected rapidly fatal cases including myocardial infarcts and drowning let us conclude that microglia in cortex and myelin layer can react rapidly and its reaction and migration is subject to pre-existing external and internal factors. Cytospin preparations proved to be a simple tool to analyze and assess complex changes in the CNS after rapid fatal damage. There is no statistically significant correlation between cytospin and postmortem interval. Therefore, the quantitative analyses of postmortem cytospins obviously reflect the neuropathology of the complete central nervous system. Cytospins provide forensic pathologists a rather simple and easy to perform method for the global assessment of CNS affliction.Disturbance in the landscape surrounding streams can interfere with water quality and cause harm to aquatic organisms. In this study, we evaluate the influence of land use on the genetic and biochemical biomarkers of fish in streams of Brazilian savanna (Cerrado). We also evaluated whether biomarker responses are seasonally consistent. For this purpose, individuals of the Neotropical tetra fish Astyanax lacustris were exposed in cages for 96 h, in 13 streams draining agroecosystems with different degrees of disturbance during the dry and wet seasons. After exposure, blood, liver, and gills were collected for multibiomarker analyses (micronuclei, erythrocytic nuclear abnormalities, lipid peroxidation, antioxidant enzymes, and biotransformation enzyme). The results showed that the gradient of anthropic disturbance was positively associated with genotoxic damage (erythrocytic nuclear abnormalities) and negatively associated with antioxidant and biotransformation enzymes of the liver in both seasons. No association of the gradient of anthropic disturbance with the frequency of micronuclei and for most gill enzymes was found for both seasons. Landscape disturbance was also negatively associated with water quality in the wet season. These results indicate that changes in land use interfere with the genetic and biochemical processes of organisms. Thus, the multibiomarker approach may represent an effective strategy for assessing and monitoring terrestrial landscape disturbance.Ozonation is one of the advanced oxidation methods that provide effective decolorization and detoxification of the dyeing wastewater without causing any sludge formation. Despite being a good alternative to biodegradation, ozonation suffers from a high operating cost. This study conducted the ozonation process at high initial dye concentrations and optimized the process parameters (such as initial ozone concentration, initial dye concentration, and pH) to minimize the operating cost in terms of the overall power consumption of the process. The ozonation of Reactive Blue dye was performed in a bubble column reactor at various process conditions. A central composite design (CCD)-based response surface method (RSM) statistical tool was used to optimize the process. An empirical correlation for the specific power consumption (defined as electricity consumed per unit mass of dye removed from a unit volume of dyeing wastewater) was developed and verified. It was found that the specific power consumption during ozonation can be lowered significantly (by ~25-30%) if the dyeing water was treated at high initial dye concentrations.The aim of the study was to analyze the impact of very fine atmospheric particles (submicron particulate matter; PM1) on visibility deterioration. Taking into consideration not only their entirely different physio-chemical properties in comparison to a well-recognized PM10 but also the origin and a growing environmental awareness of PM1, the main research problem has been solved in few steps. At first, the chemical composition of PM1 was determined in two selected urban areas in Poland. Measurements of meteorological parameters, i.e., air temperature and humidity, precipitation, atmospheric pressure, wind speed, and visibility, were also conducted. The next step of the work was the analysis of (1) seasonal changes of the concentration of PM1 and its main components, (2) the influence of chemical components of PM1 on light extinction, and (3) the influence of PM1 and humidity on visibility. Hierarchical cluster analysis, correlation matrixes and a heat map, and classification and regression tree analysis were used. The light extinction coefficient is influenced mainly by coarse mass of PM, and PM1-bound ammonium nitrate, organic matter, and by Rayleigh scattering. The less important in the light extinction coefficient shaping has PM1-bound ammonium sulfate, elemental carbon, and soil. In this way, the secondary origin PM1 components were proved to most significantly influence the visibility. The obtained results confirmed the possibility of the use of statistical agglomeration techniques to identify ranges of variation of visibility, including independent variables adopted to analyses (meteorological conditions, chemical composition of PM1, etc.).The world, addressing to achieve rapid and drastic economic growth by relying on fossil fuel energy consumption, could increase already increasing level of carbon dioxide (CO2). Therefore, there is a growing consensus that environmental sustainability by using renewable energy is the only option to avoid environmental calamity. Therefore, according to the authors' best knowledge, this is the first work to look into the short and long-run nexus between economic growth, trade openness, renewable and fossil fuel energy consumption, along with gross capital formation, population growth, and life expectancy as additional variables in top 10 highest renewable energy-using (TRU) economies and top 10 highest fossil fuel-using (TFU) economies from 1991 to 2020, by employing advanced panel data econometric approach. After demonstrating cross-sectional dependency in panel data, the Westerlund cointegration test verifies the long-term link between the variables. A cross-sectional autoregressive distributed lag (CS-ARDL) ces. Overall, the results recommended energy efficiency usage and ecological friendly innovative technologies to enhance and protect environmental quality.Co-exposure of widely used single-walled carbon nanotubes (SWCNTs) and ubiquitous cadmium (Cd) to humans through ambient air is unavoidable. Studies on joint toxicity of SWCNTs and Cd in human cells are scarce. We aimed to investigate the joint effects of SWCNTs and Cd in human lung epithelial (A549) cells. Results showed that SWCNTs were safe while Cd induce significant toxicity to A549 cells. Remarkably, Cd-induced cell viability reduction, lactate dehydrogenase leakage, cell cycle arrest, dysregulation of apoptotic gene (p53, bax, bcl-2, casp3, and casp9), and mitochondrial membrane potential depletion were significantly mitigated following SWCNTs co-exposure. Cd-induced intracellular level of reactive oxygen species, hydrogen peroxide, and lipid peroxidation were significantly attenuated by SWCNT co-exposure. Moreover, glutathione depletion and lower activity of antioxidant enzymes after Cd exposure were also effectively abrogated by co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry study indicated that higher adsorption of Cd on SCWNTs might decreased cellular uptake and the toxic potential of Cd in A549 cells.