COVID19 inherited Apply Outpatient Treatment method or Hospital stay
The situation of an off-center casing under non-uniform ground stress can occur in the process of drilling a salt-gypsum formation, and the related casing stress calculation has not yet been solved analytically. In addition, the experimental equipment in many cases cannot meet the actual conditions and the experimental cost is very high. These comprehensive factors cause the existing casing design to not meet the actual conditions and cause casing deformation, affecting the drilling operation in Tarim oil field. The finite element method is the only effective method to solve this problem at present, but the re-modelling process is time-consuming because of the changes in the parameters, such as the cement properties, casing centrality, and the casing size. In this article, an artificial intelligence method based on support vector machine (SVM) to predict the maximum stress of an off-center casing under non-uniform ground stress has been proposed. After a program based on a radial basis function (RBF)-support vector regression (SVR) (ε-SVR) model was established and validated, we constructed a data sample with a capacity of 120 by using the finite element method, which could meet the demand of the nine-factor ε-SVR model to predict the maximum stress of the casing. The results showed that the artificial intelligence prediction method proposed in this manuscript had satisfactory prediction accuracy and could be effectively used to predict the maximum stress of an off-center casing under complex downhole conditions.
Supplementary material is available for this article at 10.1007/s11431-019-1694-4 and is accessible for authorized users.
Supplementary material is available for this article at 10.1007/s11431-019-1694-4 and is accessible for authorized users.Knowledge of non-genomic inheritance of traits is currently limited. Although it is well established that maternal diet influences offspring inheritance of traits through DNA methylation, studies on the impact of prepubertal paternal diet on DNA methylation are rare. Saracatinib This study aimed to evaluate the impact of prepubertal diet in Polypay rams on complex traits, DNA methylation, and transmission of traits to offspring. A total of 10 littermate pairs of F0 rams were divided so that one ram was fed a control diet, and the other was fed the control diet with supplemental methionine. Diet was associated with earlier age at puberty in treatment vs. control F0 rams. F0 treatment rams tended to show decreased pubertal weight compared to control rams; however, no differences were detected in overall growth. A total of ten F0 rams were bred, and the entire F1 generation was fed a control diet. Diet of F0 rams had a significant association with scrotal circumference (SC) and weight at puberty of F1 offspring. The paternal diet was not significantly associated with F1 ram growth or age at puberty. The DNA methylation of F0 ram sperm was assessed, and genes related to both sexual development (e.g., DAZAP1, CHD7, TAB1, MTMR2, CELSR1, MGAT1) and body weight (e.g., DUOX2, DUOXA2) were prevalent in the data. These results provide novel information about the mechanisms through which the prepubertal paternal diet may alter body weight at puberty and sexual development.Abiotic stress adversely inhibits the growth and development of plants, by changing the expression of multiple genes. Circular RNAs (circRNAs), as a class of non-coding RNAs, function in transcriptional and posttranscriptional regulation. Yet, the involvement of circRNAs in abiotic stress response is rarely reported. In this study, the participation and function of circRNAs in low-temperature (LT)-induced stress response were investigated in tomato leaves. We generated genome-wide profiles of circRNAs and mRNAs in tomato leaves grown at 25°C room temperature (RT) and 12°C LT. Our results show that 1,830 circRNAs were identified in tomato leaves in both RT and LT treatments, among which 1,759 were differentially induced by the LT treatment. We find that the identified circRNAs are mainly located at exons of genes, but less distributed at introns of genes or intergenic regions. Our results suggest that there are 383 differentially expressed circRNAs predicted to function as putative sponges of 266 miRNAs to tar potential networks of circRNA-miRNA-mRNA under LT stress for further investigations in tomato leaves.The random regression test-day model has become the most commonly adopted model for routine genetic evaluations in dairy populations, which allows accurately accounting for genetic and environmental effects over lactation. The objective of this study was to explore appropriate random regression test-day models for genetic evaluation of milk yield in a Holstein population with a relatively small size, which is the common situation in regional or independent breeding companies to preform genetic evaluation. Data included 419,567 test-day records from 54,417 cows from the first lactation. Variance components and breeding values were estimated using a random regression test-day model with different orders (from first to fifth) of Legendre polynomials (LP) and accounted for homogeneous or heterogeneous residual variance across the lactation. Models were compared based on Akaike information criterion (AIC), Bayesian information criterion (BIC), and predictive ability. In general, models with a higher order of LP showed better goodness of fit based on AIC and BIC values. However, models with third, fourth, and fifth order of LP led to similar estimates of genetic parameters and predictive ability. Models with assumption of heterogeneous residual variances achieved better goodness of fit but yielded similar predictive ability compared with those with assumption of homogeneous residual variances. Therefore, a random regression model with third order of LP is suggested to be an appropriate model for genetic evaluation of milk yield in local Chinese Holstein populations.
Familial renal glucosuria is a rare renal tubular disorder caused by
gene variants. Most of them are exonic variants and have been classified as missense variants. However, there is growing evidence that some of these variants can be detrimental by affecting the pre-mRNA splicing process. Therefore, we hypothesize that a certain proportion of
exonic variants can result in disease
interfering with the normal splicing process of the pre-mRNA.
We used bioinformatics programs to analyze 77 previously described presumed
missense variants and identified candidate variants that may alter the splicing of pre-mRNA through minigene assays.
Our study indicated six of 7 candidate variants induced splicing alterations. Variants c.216C > A, c.294C > A, c.886G > C, c.932A > G and c.962A > G may disrupt splicing enhancer motifs and generate splicing silencer sequences resulting in the skipping of exon 3. Variants c.305C > T and c.1129G > A probably disturb splice sites leading to exon skipping.