Pericytes crosstalks inside growth microenvironment
Chitosan is industrially acquired by the alkaline N-deacetylation of chitin. Chitin belongs to the β-N-acetyl-glucosamine polymers, providing structure, contrary to α-polymers, which provide food and energy. Another β-polymer providing structure is hyaluronan. A lot of studies have been performed on chitosan to explore its industrial use. Since chitosan is biodegradable, non-toxic, bacteriostatic, and fungistatic, it has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes the main areas where these two biopolymers have an impact. The reviewed areas mostly cover most medical applications, along with non-medical applications, such as cosmetics.During preservation, Jerusalem artichoke (JA) tubers are subjected to deterioration by mold fungi under storage, which signifies a serious problem. A new blue mold (Penicillium polonium) was recorded for the first time on JA tubers. Penicillium mold was isolated, identified (morphologically, and molecularly), and deposited in GenBank; (MW041259). The fungus has a multi-lytic capacity, facilitated by various enzymes capable of severely destroying the tuber components. An economic oil-based procedure was applied for preserving and retaining the nutritive value of JA tubers under storage conditions. Caraway and clove essential oils, at a concentration of 2%, were selected based on their strong antifungal actions. JA tubers were treated with individual oils under storage, kept between peat moss layers, and stored at room temperature. Tubers treated with both oils exhibited lower blue mold severity, sprouting and weight loss, and higher levels of carbohydrates, inulin, and protein contents accompanied by increased levels of defense-related phytochemicals (total phenols, peroxidase, and polyphenol oxidase). Caraway was superior, but the results endorse the use of both essential oils for the preservation of JA tubers at room temperature, as an economic and eco-safe storage technique against the new blue mold.Amoxicillin-clavulanic acid (AMC) belongs to the WHO Essential Medicines List for children, but for optimal antimicrobial effectiveness, reconstituted dry powder suspensions need to be stored in a refrigerated environment. Many patients in low- and middle-income countries who are sold AMC suspensions would be expected not to keep to the specified storage conditions. We aimed to assess the stability of both ingredients in liquid formulations and dispersible tablets, combined with nationally representative data on access to appropriate storage. Degradation of amoxicillin (AMX) and clavulanic-acid (CLA) was measured in suspensions and dispersible tablets commercially available in Switzerland at different ambient temperatures (8 °C vs. 28 °C over 7 days, and 23 °C vs. 28 °C over 24 h, respectively). Data on access to refrigeration and electricity were assessed from the USAID-funded Demographic and Health Survey program. In suspensions, CLA degraded to a maximum of 12.9% (95% CI -55.7%, +29.9%) at 8°C and 72.3% (95% CI -82.8%, -61.8%) at a 28 °C ambient temperature during an observation period of 7 days. Dispersible tablets were observed during 24 h and CLA degraded to 15.4% (95% CI -51.9%, +21.2%) at 23 °C and 21.7% (-28.2%, -15.1%) at a 28 °C ambient temperature. There is relevant degradation of CLA in suspensions during a 7-day course. To overcome the stability challenges for all active components, durable child-appropriate formulations are needed. Until then, prescribers of AMC suspensions or pharmacists who sell the drug need to create awareness for the importance of proper storage conditions regarding effectiveness of both antibiotics and this recommendation should be reflected in the WHO Essential Medicines List for children.Due to the delicate nature of berries and the reduced shelf-life once washed, producers usually do not wash berries. Therefore, consumers are expected to wash the berries prior to consumption, and this might be a more effective way of infection prevention. However, the efficacy of consumer berry-washing procedures in removing the parasite contaminants from the berries surface has not been investigated. The aim of the present study was, therefore, to compare the efficacy of three different washing techniques in removing parasite contaminants. Three alternatives to washing berries before consumption were compared on berries artificially contaminated with oo/cysts of Cyclospora cayetanensis, Cryptosporidium parvum, and Giardia duodenalis. The results show that simple washing of berries under the cold tap for 1 min could remove on average at least 80% of the parasites, except for C. Selisistat clinical trial cayetanensis, which seems to be stickier than both G. duodenalis and C. parvum. The percent removal was slightly lower for raspberries as compared to blueberries. Although the differences are expected, a relevant result of the study is that washing contaminated berries prior to consumption by the consumer removes a considerable proportion of parasites and thereby lowers the risk of ingesting parasites' transmission stages.The purpose of this review is to summarize the importance of microwave (MW) irradiation as a kind of catalyst in organophosphorus chemistry. Slow or reluctant reactions, such as the Diels-Alder cycloaddition or an inverse-Wittig type reaction, may be performed efficiently under MW irradiation. The direct esterification of phosphinic and phosphonic acids, which is practically impossible on conventional heating, may be realized under MW conditions. Ionic liquid additives may promote further esterifications. The opposite reaction, the hydrolysis of P-esters, has also relevance among the MW-assisted transformations. A typical case is when the catalysts are substituted by MWs, which is exemplified by the reduction of phosphine oxides, and by the Kabachnik-Fields condensation affording α-aminophosphonic derivatives. Finally, the Hirao P-C coupling reaction may serve as an example, when the catalyst may be simplified under MW conditions. All of the examples discussed fulfill the expectations of green chemistry.