RESUSCITATION Involving Children Within Highrisk DELIVERIES

From World News
Revision as of 14:18, 26 October 2024 by Checkorder65 (talk | contribs) (Created page with "This study used an integrative experimental model in humans to investigate whether muscle angiogenic factors are differentially modulated by exercise stimuli eliciting differe...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This study used an integrative experimental model in humans to investigate whether muscle angiogenic factors are differentially modulated by exercise stimuli eliciting different degrees of mechanical and metabolic stress. In a randomized crossover design, 12 men performed two low-volume high-intensity exercise regimens, including short sprint intervals (SSI) or long sprint intervals (LSI) inducing pronounced mechanical/metabolic stress, and a high-volume moderate-intensity continuous exercise protocol (MIC) inducing mild but prolonged mechanical/metabolic stress. Gene and protein expression of angiogenic factors was determined in vastus lateralis muscle samples obtained before and after exercise. Exercise upregulated muscle VEGF mRNA to a greater extent in LSI and MIC compared with SSI. Analysis of angiogenic factors sensitive to shear stress revealed more marked exercise-induced VEGF receptor 2 (VEGF-R2) mRNA responses in MIC than SSI, as well as greater platelet endothelial cell adhesion molecule (PECAM-1) homeostatic perturbations.NEW & NOTEWORTHY Skeletal muscle capillary growth is orchestrated by angiogenic factors sensitive to mechanical and metabolic signals. In this study, we employed an integrative exercise model to synergistically target, yet to different extents and for different durations, the mechanical and metabolic components of muscle activity that promote angiogenesis. Our results suggest that the magnitude of the myocellular perturbations incurred during exercise determines the amplitude of the angiogenic molecular signals, implying hormetic modulation of skeletal muscle angiogenesis by exercise-induced mechanical and metabolic stress.Patients with type 2 diabetes mellitus (T2DM) exhibit diminished exercise capacity likely attributable to reduced skeletal muscle blood flow (i.e., exercise hyperemia). A potential underlying mechanism of the impaired hyperemic response to exercise could be inadequate blunting of sympathetic-mediated vasoconstriction (i.e., poor functional sympatholysis). Therefore, we studied the hyperemic and vasodilatory responses to handgrip exercise in patients with T2DM as well as vasoconstriction to selective α-agonist infusion. Forearm blood flow (FBF) and vascular conductance (FVC) were examined in patients with T2DM (n = 30) as well as nondiabetic controls (n = 15) with similar age (59 ± 9 vs. 60 ± 9 yr, P = 0.69) and body mass index (31.4 ± 5.2 vs. Ferrostatin1 29.5 ± 4.6 kg/m2, P = 0.48). Intra-arterial infusion of phenylephrine (α1-agonist) and dexmedetomidine (α2-agonist) were used to induce vasoconstriction [(FVCwith drug - FVCpredrug)/FVCpredrug × 100%]. Subjects completed rest and dynamic handgrip exercise (20% of maximumdiabetes mellitus have blunted hyperemic and vasodilatory responses to dynamic handgrip exercise. Moreover, we illustrate greater α1-adrenergic-mediated vasoconstriction may contribute to our initial observations. Collectively, these data suggest patients with type 2 diabetes may have impaired functional sympatholysis, which can contribute to their reduced exercise capacity.Hypercholesterolemia- and atherosclerosis-caused vasomotor property dysfunction may be involved in many clinic manifestations of atherosclerosis, including angina, acute myocardial infarction, and sudden cardiac death. However, its underlying mechanism is not clear. The endothelial glycocalyx is a protective surface layer on the endothelial cells, serving as a molecular sieve, cell adhesion modulator, and mechanosensor for blood flow. In the present study, we demonstrated by confocal microscopy in Sprague-Dawley (SD) male rats fed a 12-wk high-cholesterol diet (HC) compared with the normal diet (NC) that the dimension of the endothelial glycocalyx reduced significantly in both the common carotid artery (2.89 ± 0.41 µm and 3.25 ± 0.44 μm, respectively) and the internal sinus region (2.35 ± 0.07 µm and 3.46 ± 0.86 μm, respectively). Furthermore, we showed by real-time PCR that this dimension modification of endothelial glycocalyx may be attributed to a significant downregulation of heparan sulfate proteoglycan may disturb its mechanotransduction of local shear stress, lower nitric oxide (NO) release, and impair vasomotor responses to norepinephrine (NE) and acetylcholine (ACh).A lower heart rate (HR) during heat exposure is a classic marker of heat acclimation (HA), although it remains unclear whether this adaptation occurs secondary to reduced thermal strain and/or improvements in cardiac function. We evaluated the hypothesis that short-term passive HA reduces HR and improves cardiac function during passive heating. Echocardiography was performed under thermoneutral and hyperthermic conditions in 10 healthy adults (9 men/1 woman, 29 ± 6 yr old), pre and post 7 days of controlled hyperthermia. HR (P = 0.61), stroke volume (P = 0.99), and cardiac output (P = 0.99), were similar on days 1 and 7 of HA. Core (pre 38.17 ± 0.42, post 38.15 ± 0.27°C, P = 0.95) and mean skin (pre 38.24 ± 0.41, post 38.51 ± 0.29°C, P = 0.17) temperatures were similar during hyperthermic echocardiographic assessments. Cardiac systolic function was unaffected by HA (P ≥ 0.10). HA attenuated the decrease in end-diastolic volume (pre -18 ± 18, post -12 ± 19 mL, P = 0.05), accentuated the greater atrial contribucardiac function during passive heating.Diastolic dysfunction (DD) is a major component of heart failure with preserved ejection fraction (HFpEF). Accordingly, a profound understanding of the underlying biomechanical mechanisms involved in DD is needed to elucidate all aspects of HFpEF. In this study, we have developed a computational model of DD by leveraging the power of an advanced one-dimensional arterial network coupled to a four-chambered zero-dimensional cardiac model. The two main pathologies investigated were linked to the active relaxation of the myocardium and the passive stiffness of the left ventricular wall. These pathologies were quantified through two parameters for the biphasic delay of active relaxation, which simulate the early and late-phase relaxation delay, and one parameter for passive stiffness, which simulates the increased nonlinear stiffness of the ventricular wall. A parameter sensitivity analysis was conducted on each of the three parameters to investigate their effect in isolation. The three parameters were then concure elucidate the biomechanical effect of the relaxation pathologies involved and how these pathologies interact to create the various phenotypes of DD.Cardiovascular disease is a major cause of morbidity and mortality worldwide. Innovative new treatment options for this cardiovascular pandemic are urgently needed. Activation of purinergic receptors (PRs) is critically involved in the development and progression of cardiovascular disease including atherosclerosis, ischemic heart disease, hypertension, and diabetes. PRs have been targeted for the treatment of several cardiovascular diseases in a clinical setting. The P2Y12R antagonists such as clopidogrel, ticagrelor, and others are the most successful class of purinergic drugs targeting platelets for the treatment of acute coronary syndrome. In addition to targeting platelets, ticagrelor may exert P2Y12R-independent effect by targeting erythrocyte-mediated purinergic activation. The partial A1R agonist neladenoson and the A2AR agonist regadenoson have been applied in cardiovascular medicine. In experimental studies, many other PRs have been shown to play a significant role in the development and progression of cardiovascular diseases, and targeting these receptors have resulted in promising outcomes. Therefore, many of these PRs including A2BR, A3R, P2X3R, P2X4R, P2X7R, P2Y1R, P2Y4R, P2Y6R, and P2Y11R can be considered as therapeutic targets. However, the multitude of PR subtypes expressed in different cells of the cardiovascular system may constitute a challenge whether single or multiple receptors should be targeted at the same time for the best efficacy. The present review discusses the promising purinergic drugs used in clinical studies for the treatment of cardiovascular disease. We also update experimental evidence for many other PRs that can be considered as therapeutic targets for future drug development.Ubiquitylation is a key event that regulates protein turnover, and induction of the ubiquitin ligase E3 WWP1 has been associated with age. Left ventricular hypertrophy (LVH) commonly occurs as a function of age and can cause heart failure (HF) with a preserved ejection fraction (EF; HFpEF). We hypothesized that overexpression (O/E) of WWP1 in the heart would cause LVH as well as functional and structural changes consistent with the aging HFpEF phenotype. Global WWP1 O/E was achieved in mice (n = 11) and echocardiography (40 MHz) performed to measure LV mass, EF, Doppler velocities (early E, late/atrial A), myocardial relaxation (E'), and isovolumetric relaxation time (IVRT) at 4, 6, and 8 wk. Age-matched wild-type animals (n = 15) were included as referent controls. LV EF was identical (60 ± 1 vs. 60 ± 1%, P > 0.90) with no difference in LV mass (67 ± 3 vs. 75 ± 5, P > 0.25) at 4 wk. However, at 8 wk of age, LV mass increased over twofold, E/A fell (impaired passive filling), and E/E' was lower and IVRT prolof WWP1 in mice induced LV hypertrophy, diastolic dysfunction, and ECM accumulation, consistent with the HFpEF phenotype, and thus may identify a new therapeutic pathway.The efficacy of an anthracycline antibiotic doxorubicin (DOX) as a chemotherapeutic agent is limited by dose-dependent cardiotoxicity. DOX is associated with activation of intracellular stress signaling pathways including p38 MAPKs. While previous studies have implicated p38 MAPK signaling in DOX-induced cardiac injury, the roles of the individual p38 isoforms, specifically, of the alternative isoforms p38γ and p38δ, remain uncharacterized. We aimed to determine the potential cardioprotective effects of p38γ and p38δ genetic deletion in mice subjected to acute DOX treatment. Male and female wild-type (WT), p38γ-/-, p38δ-/-, and p38γ-/-δ-/- mice were injected with 30 mg/kg DOX and their survival was tracked for 10 days. During this period, cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picro Sirius Red staining. Immunoblotting was performed to assess the expression of signaling proteins and markers linked to autophagy. Significantly improved survival was observed in protective in female but not in male mice. Cardiac structure and function were preserved in DOX-treated p38δ-/- females and autophagy marker was increased.Rationale Aerosol generation with modes of oxygen therapy such as high-flow nasal cannula and noninvasive positive-pressure ventilation is a concern for healthcare workers during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The amount of aerosol generation from the respiratory tract with these various oxygen modalities is unknown.Objectives To measure the size and number concentration of particles and droplets generated from the respiratory tract of humans exposed to various oxygen delivery modalities.Methods Ten healthy participants with no active pulmonary disease were enrolled. Oxygen modalities tested included nonhumidified nasal cannula, face mask, heated and humidified high-flow nasal cannula, and noninvasive positive-pressure ventilation. Aerosol generation was measured with each oxygen mode while participants performed maneuvers of normal breathing, talking, deep breathing, and coughing. Testing was conducted in a negative-pressure room. Particles with a diameter between 0.