Microfluidic methods to analyze tissue boundaries to immunotherapy
The synthesis of graphene-based materials has attracted considerable attention in drug delivery strategies. Indeed, the conductivity and mechanical stability of graphene have been investigated for controlled and tunable drug release via electric or mechanical stimuli. However, the design of a thermo-sensitive scaffold using pristine graphene (without distortions related to the oxidation processes) has not been deeply investigated yet, although it may represent a promising approach for several therapeutic treatments. Here, few-layer graphene was used as a nanofiller in a hydrogel system with a thermally tunable drug release profile. In particular, varying the temperature (25 °C, 37 °C and 44 °C), responsive drug releases were noticed and hypothesized depending on the formation and perturbation of π-π interactions involving graphene, the polymeric matrix and the model drug (diclofenac). As a result, these hybrid hydrogels show a potential application as thermally triggered drug release systems in several healthcare scenarios.Glucosamine (GlcN) is a common drug used to treat osteoarthritis (OA). To prolong the action time of glucosamine on OA and improve its therapeutic effect, this research explored the potential application of GlcN-loaded thermosensitive hydrogels based on poloxamer 407 and poloxamer 188 for OA therapy by intra-articular injection. The thermosensitive hydrogels were prepared by cold method, and the effects of P407, P188, and GlcN on sol-gel transition temperature (Tsol-gel) were compared. After screening was performed, the optimized formulation showed good temperature sensitivity, and Tsol-gel was approximately 35 °C. learn more In vitro release tests showed that GlcN was slowly released from the thermosensitive hydrogels. After the gels were intra-articularly administered to treat OA in rabbits, the degree of swelling and inflammatory factors were significantly decreased in the hydrogel group compared with those in the OA model group (P less then 0.05). Histological results showed that the GlcN-administered group had a good repair effect on damaged cartilage. At the same dose, the effect of the thermosensitive hydrogels was better than that of the aqueous solution. Therefore, GlcN-loaded thermosensitive hydrogels based on poloxamers are promising sustainable delivery systems for OA therapy by intra-articular injection.The aim of the present study was to develop innovative patches for dermo-cosmetic applications based on dissolvable hyaluronic acid (HA) microneedles (MNs) combined with bacterial nanocellulose (BC) as the back layer. HA was employed as an active biomacromolecule, with hydrating and regenerative properties and volumizing effect, whereas BC was used as support for the incorporation of an additional bioactive molecule. Rutin, a natural antioxidant, was selected as the model bioactive compound to demonstrate the effectiveness of the system. The obtained HA-MNs arrays present homogenous and regular needles, with 200 μm in base width, 450 μm in height and 500 μm tip-to-tip distance, and with sufficient mechanical force to withstand skin insertion with a failure force higher than 0.15 N per needle. The antioxidant activity of rutin was neither affected by its incorporation in the MNs system nor by their storage at room temperature for 6 months. Preliminary in vivo studies in human volunteers unveiled their safety and cutaneous compatibility, as no significant changes in barrier function, stratum corneum hydration nor redness were detected. These results confirm the potentiality of this novel system for skin applications, e.g. cosmetics, taking advantage of the recognized properties of HA and the capacity of BC to control the release of bioactive molecules.In this work, sodium alginate (SA) based "all-natural" composite bio-sponges were designed for potential application as wound care scaffold. The composite bio-sponges were developed from the aqueous amalgamation of SA and cellulose nanofibres (CNFs) in bio-extracts like Rice water (Rw) and Giloy extract (Ge). These sponges were modified by employing a simple coating strategy using vegetable oil-based bio-polyurethane (BioPU) to tailor their physicochemical and biological properties so as to match the specific requirements of a wound care scaffold. Bio-sponges with shared interpenetrating polymeric network structures were attained at optimized BioPU coating formulation. The interpenetration of BioPU chains within the sponge construct resulted in the formation of numerous micro-networks in the interconnected microporous structure of sponges (porosity ≥75%). The coated sponge showed a superior mechanical strength (compressive strength ~3.8 MPa, compressive modulus ~35 MPa) with appreciable flexibility and recovehese sponges as functional wound care scaffolds as well as its diverse potential as a suitable substrate for various tissue engineering applications.Transdermal drug delivery systems (TDDS) are used as an alternative route to deliver drugs into the blood system for therapy. The matrix materials that have been widely used in TDDS are hydrogels. The dextran hydrogels were prepared by the solution casting using trisodium trimetaphosphate (STMP) as the crosslinking agent, and diclofenac sodium salt (Dcf) as the anionic model drug. Poly(2-ethylaniline) (PEAn) was successfully synthesized and embedded into the dextran hydrogel as the drug encapsulation host. The in-vitro release of Dcf from the hydrogels was investigated using a modified Franz-Diffusion cell in a phosphate-buffered saline (PBS) solution at the pH of 7.4 and at 37 °C for a period of 24 h, under the effects of crosslinking ratios, dextran molecular weights, electric potentials, and the conductive polymer PEAn. The release mechanism of Dcf from the dextran hydrogels and the composite without electrical potential was the diffusion controlled mechanism or the Fickian diffusion. Under applied electrical potentials, the release mechanism was a combination between the Fickian diffusion and the matrix swelling. The Dcf diffusion coefficients from the dextran hydrogels without electrical potential increased with decreasing crosslinking ratio and molecular weight. Under electrical potentials, the corresponding diffusion coefficients were much higher due mainly to the electro-repulsive force between the negatively charged electrode and the negatively charged dextran and the induced dextran expansion. For the Dcf-loaded PEAn/dextran composite, the diffusion coefficient was enhanced by two orders of magnitude when the electric potential was applied, specifically illustrating the unique features of PEAn as an efficient drug encapsulation host without electric field, and as a drug release enhancer under electric field through the reduction reaction.