Juglone a flexible natural system for receiving fresh bioactive substances
The immediate postexercise/physical activity period is critical for sickle cell trait (SCT) carriers and disease (SCD) patients. Exercise-related blood acidosis is known to trigger the cascade of HbS deoxygenation and polymerization, leading to red blood cell sickling and subsequent complications. Unfortunately, two facts worsen exercise-related blood acidosis during the initial postexercise period First, blood lactate and H+ concentrations continue to increase for several minutes after exercise completion, exacerbating blood acidosis. Second, blood lactate concentration remains elevated and pH altered for 20-45 min during inactivity after intense exercise, keeping acid/base balance disturbed for a long period after exercise. Therefore, the risk of complications (including vasoocclusive crises and even sudden death) persists and even worsens several minutes after intense exercise completion in SCT carriers or SCD patients. Light physical activity following intense exercise (namely, active recovery) may, by accelerating lactate removal and acid/base balance restoration, reduce the risk of complications. Scientific evidence suggests that light exercise at or below the first lactate threshold is an appropriate strategy.Decompression sickness (DCS) is a systemic pathophysiological process featured by bubble load. Lung dysfunction plays a harmful effect on off-gassing, which contributes to bubble load and subsequent DCS occurrence. This study aimed to investigate the effects of pulmonary surfactant on DCS as it possesses multiple advantages on the lung. Rats were divided into three groups the normal (n = 10), the surfactant (n = 36), and the saline (n = 36) group. Animals in surfactant or saline group were administered aerosol surfactant or saline 12 h before a stimulated diving, respectively. Signs of DCS were recorded and bubble load was detected. The contents of phospholipid and surfactant protein A (SPA), protein, IL-1 and IL-6 in bronchoalveolar lavage fluid (BALF), and lung wet/dry (W/D) ratio were determined. Serum levels of IL-6, ICAM-1, E-selectin, GSH, and GSSG were detected. In surfactant-treated rats, the morbidity and mortality of DCS markedly decreased (P less then 0.01 and P less then 0.05, respectively). Survival time prolonged and the latency to DCS dramatically delayed (P less then 0.01). More importantly, bubble load markedly decreased (P less then 0.01). The increases of protein, IL-1 and IL-6 in BALF, and lung W/D ratio were alleviated. Restoration of total phospholipid and SPA in BALF and ICAM-1 and E-selectin in serum was observed. The inflammation and oxidation were attenuated (P less then 0.01). In conclusion, prediving administrating exogenous surfactant by aerosolization is an efficient, simple, and safe method for DCS prevention in rats.NEW & NOTEWORTHY This is the first study exploring the effects of aerosol surfactant on DCS prevention and it was proven to be an efficient and simple method. The role of surfactant in facilitating off-gassing was thought to be the critical mechanism in bubble degrading and subsequent DCS prevention.Hypoxia poses a serious threat to pilots. The aim of this study was to examine the efficacy of electrical bioimpedance (EBI) in detecting the onset of hypoxia in real time in a rabbit hypoxia model. Thirty-two New Zealand rabbits were divided equally into four groups (control group and three hypoxia groups, i.e., mild, moderate, and severe). Hypoxia was induced by simulating various altitudes in the hypobaric oxygen chamber (3,000 m, 5,000 m, and 8,000 m). Both cerebral impedance and blood oxygen (SpO2) were monitored continuously. Results showed that the cerebral impedance increased immediately during the period of increasing altitude and decreased quickly to the initial baseline at the phase of descending altitude. Moreover, the change of cerebral impedance in the mild hypoxia group (3,000 m) was significantly smaller than those in the other two groups (5,000 m and 8,000 m, P 10% were 0.735, 0.826, and 0.845, respectively. These findings demonstrated that EBI could sensitively and accurately monitor changes of cerebral impedance induced by hypoxia, which might provide a potential tool for the real-time and noninvasive monitoring of hypoxic condition of pilots in flight for early identification of hypoxia.NEW & NOTEWORTHY This study is the first to examine the efficacy of electrical bioimpedance (EBI) in detecting the onset of high-altitude hypoxia in real time. The novelty of this research includes three aspects. First, the cerebral impedance of rabbits increased immediately during the rising of altitude and decreased quickly to the initial baseline at the phase of descending altitude. Second, there was a significant correlation and high concordance between cerebral impedance and SpO2. Third, cerebral impedance could determine the change of SpO2 resulting from hypoxia.Significance The redox balance of cells provides a stable microenvironment for biological macromolecules to perform their physiological functions. As redox imbalance is closely related to the occurrence and development of a variety of diseases, antioxidant therapies are an attractive option. However, redox-based therapeutic strategies have not yet shown satisfactory results. To find the key reason is of great significance. Recent Advances We emphasize the precise nature of redox regulation and elucidate the importance and necessity of precision redox strategies from three aspects differences in redox status, differences in redox function, and differences in the effects of redox therapy. We then propose the "5R" principle of precision redox in antioxidant pharmacology "Right species, Right place, Right time, Right level, and Right target." Critical Issues Redox status must be considered in the context of species, time, place, level, and target. The function of a biomacromolecule and its cellular signaling role are closely dependent on redox status. Accurate evaluation of redox status and specific interventions are critical for the success of redox treatments. Precision redox is the key for antioxidant pharmacology. The precise application of antioxidants as nutritional supplements is also key to the general health of the population. Etrumadenant cell line Future Directions Future studies to develop more accurate methods for detecting redox status and accurately evaluating the redox state of different physiological and pathological processes are needed. Antioxidant pharmacology should consider the "5R" principle rather than continuing to apply global nonspecific antioxidant treatments.