Spectral trademark associated with attentional reorienting from the mind
The recent advancements in single-cell technologies, including single-cell chromatin accessibility sequencing (scCAS), have enabled profiling the epigenetic landscapes for thousands of individual cells. However, the characteristics of scCAS data, including high dimensionality, high degree of sparsity and high technical variation, make the computational analysis challenging. Reference-guided approaches, which utilize the information in existing datasets, may facilitate the analysis of scCAS data. Here, we present RA3 (Reference-guided Approach for the Analysis of single-cell chromatin Accessibility data), which utilizes the information in massive existing bulk chromatin accessibility and annotated scCAS data. RA3 simultaneously models (1) the shared biological variation among scCAS data and the reference data, and (2) the unique biological variation in scCAS data that identifies distinct subpopulations. We show that RA3 achieves superior performance when used on several scCAS datasets, and on references constructed using various approaches. Altogether, these analyses demonstrate the wide applicability of RA3 in analyzing scCAS data.Extreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. GDC-0084 The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.In the 1970s, Paul Martin proposed that big game hunters armed with fluted projectile points colonized the Americas and drove the extinction of megafauna. Around fifty years later, the central role of humans in the extinctions is still strongly debated in North American archaeology, but little considered in South America. Here we analyze the temporal dynamic and spatial distribution of South American megafauna and fluted (Fishtail) projectile points to evaluate the role of humans in Pleistocene extinctions. We observe a strong relationship between the temporal density and spatial distribution of megafaunal species stratigraphically associated with humans and Fishtail projectile points, as well as with the fluctuations in human demography. On this basis we propose that the direct effect of human predation was the main factor driving the megafaunal decline, with other secondary, but necessary, co-occurring factors for the collapse of the megafaunal community.Neutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.India is the third-largest contributor to global energy-use and anthropogenic carbon emissions. India's urban energy transitions are critical to meet its climate goals due to the country's rapid urbanization. However, no baseline urban energy-use dataset covers all Indian urban districts in ways that align with national totals and integrate social-economic-infrastructural attributes to inform such transitions. This paper develops a novel bottom-up plus top-down approach, comprehensively integrating multiple field surveys and utilizing machine learning, to model All Urban areas' Energy-use (AllUrE) across all 640 districts in India, merged with social-economic-infrastructural data. Energy use estimates in this AllUrE-India dataset are evaluated by comparing with reported energy-use at three scales nation-wide, state-wide, and city-level. Spatially granular AllUrE data aggregated nationally show good agreement with national totals ( less then 2% difference). The goodness-of-fit ranged from 0.78-0.95 for comparison with state-level totals, and 0.90-0.99 with city-level data for different sectors. The relatively strong alignment at all three spatial scales demonstrates the value of AllUrE-India data for modelling urban energy transitions consistent with national energy and climate goals.Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased.