A semiparametric mixedeffects model for censored longitudinal data
To characterize the mechanisms by which the highly conserved exocyst trafficking complex regulates eye physiology in zebrafish and mice, we focused on Exoc5 (also known as sec10), a central exocyst component. We analyzed both exoc5 zebrafish mutants and retinal pigmented epithelium (RPE)-specific Exoc5 knockout mice. Exoc5 is present in both the non-pigmented epithelium of the ciliary body and in the RPE. In this study, we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if loss of visual function is induced by postnatal RPE Exoc5-deficiency. Exoc5-/- zebrafish had smaller eyes, with decreased number of melanocytes in the RPE and shorter photoreceptor outer segments. At 3.5 days post-fertilization, loss of rod and cone opsins were observed in zebrafish exoc5 mutants. Mice with postnatal RPE-specific loss of Exoc5 showed retinal thinning associated with compromised visual function and loss of visual photoreceptor pigments. Abnormal levels of RPE65 together with a reduced c-wave amplitude indicate a dysfunctional RPE. The retinal phenotype in Exoc5-/- mice was present at 20 weeks, but was more pronounced at 27 weeks, indicating progressive disease phenotype. We previously showed that the exocyst is necessary for photoreceptor ciliogenesis and retinal development. Here, we report that exoc5 mutant zebrafish and mice with RPE-specific genetic ablation of Exoc5 develop abnormal RPE pigmentation, resulting in retinal cell dystrophy and loss of visual pigments associated with compromised vision. Together, these data suggest that exocyst-mediated signaling in the RPE is required for RPE structure and function, indirectly leading to photoreceptor degeneration.Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.(1) Background Nanotechnology is being widely applied for anticancer strategies with few side effects. Nanoparticles (NPs) prepared from natural extracts are promising candidates for cancer treatment because of their unique physicochemical characteristics. This study aimed to prepare gold nanoparticles (AuNPs) from Phyllanthus emblica fruit extract (PEFE) using Bifidobacterium animalis subsp. lactis (B. lactis) and to evaluate their anticancer activity against the human gastric adenocarcinoma cell-line (AGS). Cordycepin nmr (2) Methods The safety of microbial biosynthesis AuNPs (PEFE-AuNPs) was assessed by evaluating the cytotoxicity. The anticancer activity of PEFE-AuNPs was investigated in AGS cells in terms of apoptosis and autophagy. (3) Results PEFE-AuNPs exhibited significant cytotoxicity against AGS cells but not against normal cells. The apoptosis induced by PEFE-AuNPs in AGS cells was associated with PTEN-induced kinase 1 (PINK1)-Parkin mediated reduction of mitochondrial membrane potential and activation of intracellular signaling apoptosis pathways. The anticancer activity of PEFE-AuNPs was associated with induction of apoptosis through inhibition of autophagy, downregulation of LC3-II/LC3-I and Beclin-1 expression, and upregulation of p62 expression in AGS cells. (4) Conclusions This study is the first to demonstrate the anticancer activity of PEFE-AuNPs against AGS cells. Our results provide a good starting point for the development of new anticancer products based on gold nanoparticles of P. emblica fruit extract.Emotional disorders are those that most commonly present comorbidly with medical conditions. The Unified Protocol for the Transdiagnostic Treatment of Emotional Disorders (UP), a cognitive-behavioral emotion-based intervention, has proven efficacy and versatility. link2 The aim of this systematic review is to know the current (research studies) and future research interest (study protocols) in using the UP for the transdiagnostic treatment of emotional symptoms or disorders (EDs) in people with a medical condition. Using the PRISMA guidelines, a literature search was conducted in Web of Science, PubMed, Medline, and Dialnet. The nine research studies included in this review indicated that the UP is effective in treating emotional symptomatology in a population with a medical condition (effect sizes ranging from d = -3.34 to d = 2.16). The three included study protocols suggest interest in the future UP application to different medical conditions, and also in distinct application formats. Our review results are encouraging, and conducting more controlled studies is advised to recommend the UP to treat and/or prevent EDs in medical conditions, especially in children and youths.Steady-state emission spectroscopy of 1-anilino-8- naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy, and DSC methods were used to characterize the interactions of the newly synthesized 1-carba-alpha-tocopherol (CT) with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane. The DSC results showed significant perturbations in the DPPC structure for CT concentrations as low as 2 mol%. The main phase transition peak was broadened and shifted to lower temperatures in a concentration-dependent manner, and pretransition was abolished. Increasing CT concentrations induced the formation of new phases in the DPPC structure, leading to melting at lower temperatures and, finally, disruption of the ordered DPPC structure. Hydration and structural changes of the DPPC liposomes using ANS and DPH fluorescent probes, which are selectively located at different places in the bilayer, were studied. With the increased concentration of CT molecules in the DPPC liposomes, structural changes with the simultaneous formation of different phases of such mixture were observed. Temperature studies of such mixtures revealed a decrease in the temperature of the main phase transition and fluidization at decreasing temperatures related to increasing hydration in the bilayer. Contour plots obtained from concentration-temperature data with fluorescent probes allowed for identification of different phases, such as gel, ordered liquid, disordered liquid, and liquid crystalline phases. The CT molecule with a modified chromanol ring embedded in the bilayer led to H-bonding interactions, expelling water molecules from the interphase, thus introducing disorder and structural changes to the highly ordered gel phase.We investigated the association between the widening of a nationwide restaurant smoking ban, enacted on 1 June 2007, and stroke admissions. All acute stroke admissions between 1 May 2005 and 30 June 2009 were retrieved from a mandatory registry covering mainland Finland. Patients aged ≥18 years were included. One annual admission per patient was included. Negative binomial regression accounting for the at-risk population was applied. We found no difference in stroke occurrence before and after the smoking ban within 7 days (p = 0.217), 30 days (p = 0.176), or the whole study period (p = 0.998). Results were comparable for all stroke subtypes (ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage). There was no sign of decreased occurrence in June 2007 compared to June in 2005-2006, and all subtypes of stroke occurred at least as frequently in both May and June of 2008 as in May and June of 2007. In conclusion, the nationwide restaurant smoking ban Finland enacted in June 2007 was not associated with any immediate reduction in stroke occurrence.Skeletal muscles, being one of the most abundant tissues in the body, are involved in many vital processes, such as locomotion, posture maintenance, respiration, glucose homeostasis, etc. Hence, the maintenance of skeletal muscle mass is crucial for overall health, prevention of various diseases, and contributes to an individual's quality of life. Prolonged muscle inactivity/disuse (due to limb immobilization, mechanical ventilation, bedrest, spaceflight) represents one of the typical causes, leading to the loss of muscle mass and function. This disuse-induced muscle loss primarily results from repressed protein synthesis and increased proteolysis. Further, prolonged disuse results in slow-to-fast fiber-type transition, mitochondrial dysfunction and reduced oxidative capacity. Glycogen synthase kinase 3β (GSK-3β) is a key enzyme standing at the crossroads of various signaling pathways regulating a wide range of cellular processes. This review discusses various important roles of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscles under disuse/unloading conditions and subsequent recovery. According to its vital functions, GSK-3β may represent a perspective therapeutic target in the treatment of muscle wasting induced by chronic disuse, aging, and a number of diseases.The year 2021 marks the 40th anniversary since physicians recognized symptoms of the acquired immunodeficiency syndrome (AIDS), a disease that has since caused more than 30 million deaths worldwide. Despite the passing of four decades, there remains no licensed vaccine for the human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS. Despite the development of outstanding anti-retroviral drugs, there are currently more than one-half million deaths each year due to AIDS. Here, we revisit a conventional vaccine strategy used for protection against variable pathogens like HIV-1, which combines an array of diverse surface antigens. The strategy uses antibody recognition patterns to categorize viruses and their surface antigens into groups. Then a leader is assigned for each group and group leaders are formulated into vaccine cocktails. link3 The group leaders are 'natural mosaics', because they share one or more epitope(s) with each of the other group members. We encourage the application of this conventional approach to HIV-1 vaccine design. We suggest that the partnering of an antibody-instructed envelope cocktail with new vaccine vectors will yield a successful vaccine in the HIV-1 field.