Advancements in Field Discovery Determined by CRISPRCas Program
A bioinspired study on replicating the superior damage tolerance of bioceramic composites requires a detailed understanding of the intrinsic properties of biogenic mineral units. Here, we investigate and compare the intrinsic properties of biogenic calcite (Atrina rigida) and aragonite (Sinanodonta woodiana) by conducting microbending experiments on the separated prismatic building blocks. Analyzed bending results indicate that the biogenic calcite has a higher modulus (36.24 ± 14.4 GPa for A. rigida vs. 29.9 ± 10.5 GPa for S. woodiana) and strength (446.5 ± 141.5 MPa for A. rigida vs. 338.6 ± 63.2 MPa for S. ProteinaseK woodiana) than the biogenic aragonite, while the nanoindentation results indicate the opposite trend. Further systematic fractographic analysis suggests that the biogenic calcite fractures like amorphous glass, while the biogenic aragonite resembles polycrystalline ceramics. These contradictory behaviors of biogenic calcite and aragonite under tension-dominated (microbending) and indentation loading conditions are attributed to their different intrinsic structures, i.e., intracrystalline organic inclusions in single-crystal calcite vs. interlocked nanograins in polycrystalline aragonite.The in-depth development of biological materials, especially natural polymer materials, has injected strong vitality into clinical wound treatment. Here, a new type of controllable responsive microparticles composed of several natural polymer materials was presented for drug release and wound healing. These hybrid microparticles consisted of silk fibroin, gelatin, agarose, and black phosphorus quantum dots (BPQDs) and were loaded with growth factors and antibacterial peptides. Under near-infrared (NIR) irradiation, BPQDs could absorb the NIR light and increase the temperature of the microparticles to the melting point of gelatin. When the gelatin started to melt, the encapsulated drugs were gradually released because of the reversible phase transformation. Both in vitro and in vivo experiments have demonstrated that the BPQD-laden microparticles with a NIR-responsive feature could achieve the desired controllable release of growth factors to promote neovascularization formation. In addition, because antibacterial peptides were also mixed with the secondary hydrogel and encapsulated in the scaffolds, the microparticles are imparted with the antibacterial ability during storage and usage. These characteristics of BPQD-laden natural protein hybrid microparticles make them ideal for drug delivery and wound healing.Space cooling and heating consume a large proportion of global energy, so passive thermal management materials (i.e., without energy input), especially dual-mode materials including cooling and heating bifunctions, are becoming more and more attractive in many areas. Herein, a function-switchable Janus membrane between cooling and heating consisting of a multilayer structure of polyvinylidene fluoride nanofiber/zinc oxide nanosheet/carbon nanotube/Ag nanowire/polydimethylsiloxane was fabricated for comprehensive thermal management applications. In the cooling mode, the high thermal radiation emissivity (89.2%) and sunlight reflectivity (90.6%) of the Janus membrane resulted in huge temperature drops of 8.2-12.6, 9.0-14.0, and 10.9 °C for a substrate, a closed space, and a semiclosed space, respectively. When switching to the heating mode, temperature rises of 3.8-4.6, 4.0-4.8, and 12.5 °C for the substrate, closed space, and semiclosed space, respectively, were achieved owing to the high thermal radiation reflectivity (89.5%) and sunlight absorptivity (74.1%) of the membrane. Besides, the Janus membrane has outstanding comprehensive properties of the membrane, including infrared camouflaging/disguising, electromagnetic shielding (53.1 dB), solvent tolerance, waterproof properties, and high flexibility, which endow the membrane with promising application prospects.Electro-optic (EO) modulation is of interest to impart information onto an optical carrier. Inorganic crystals-most notably LiNbO3 and BaTiO3-exhibit EO modulation and good stability, but are difficult to integrate with silicon photonic technology. Solution-processed organic EO materials are readily integrated but suffer from thermal degradation at the temperatures required in operating conditions for accelerated reliability studies. Hybrid organic-inorganic metal halide perovskites have the potential to overcome these limitations; however, these have so far relied on heavy metals such as lead and cadmium. Here, we report linear EO modulation using metal-free perovskites, which maintain the crystalline features of the inorganic EO materials and incorporate the flexible functionality of organic EO chromophores. We find that, by introducing a deficiency of cations, we reduce the symmetry in the perovskite crystal and produce thereby an increased EO response. The best-engineered perovskites reported herein showcase an EO coefficient of 14 pm V-1 at a modulation frequency of 80 kHz, an order of magnitude higher than in the nondefective materials. We observe split peaks in the X-ray diffraction and neutron diffraction patterns of the defective sample, indicating that the crystalline structure has been distorted and the symmetry reduced. Density functional theory (DFT) studies link this decreased symmetry to NH4+ deficiencies. This demonstration of EO from metal-free perovskites highlights their potential in next-generation optical information transmission.Mast cells (MCs) are effector cells of the immune system commonly known for their role in asthma and allergy. They are present throughout biological systems in various tissues, serving as an interface between the biological system and environment. Previous work characterizing the impact of malaria on MCs revealed contradictory results, showing minimal to strong correlation between MC degranulation and disease progression. This work seeks to reveal how MC degranulation is impacted in the presence of malaria, induced by Plasmodium chabaudi, using a mouse model and a single cell measurement technique that reveals exquisite biophysical detail about any impacts to the degranulation process. It was hypothesized that the malaria parasites would impact MC degranulation response during live infection, and the differences would be revealed via carbon-fiber microelectrode amperometry. In fact, the data collected show that different stages of malaria infection affect MC degranulation differently, affirming the importance of considering different infection stages in future studies of malarial immune response.