Advertising campaign in opposition to showing dogs head gets to essential landmark
Here, in light of studies, performed mainly with raw milk, that considered dominant "planktonic" conditions, we reexamine the changes triggered by cold storage alone or combined with nitrogen gas (N2) flushing on bacterial populations and discuss how the observed benefits of the treatment could also contribute to limiting BF formation in dairies.Sulfated fucans are important marine polysaccharides widely distributed in brown algae and echinoderms, which gained increasing research interest for their various biological and biomedical activities. Fucanases could serve as tools in the bioconversion and structural investigation of sulfated fucans. A few gene-defined endo-1,4-fucanases have been characterized, while the sequence of endo-1,3-fucanase remain unstudied. Here, an endo-1,3-fucanase gene funA was screened from the genome of marine bacterium Wenyingzhuangia fucanilytica CZ1127T using transcriptomics. None of the previously reported glycoside hydrolase domains were predicted in the enzyme FunA, which hydrolyzed sulfated fucans in a random endo-acting manner. Ultrahigh performance size exclusion chromatography-mass spectrometry and nuclear magnetic resonance analyses revealed that FunA specifically cleaves α-1,3 glycosidic linkage between 2-O-sulfated and non-sulfated fucose residues. FunA exhibited transglycosylating activity with glycerin, methanol, and L-fucose as acceptors. D206 and E264 were critical for the functioning of FunA as identified by the site-directed mutagenesis. Another five homologs of FunA were confirmed to possess endo-1,3-fucanase activities. This is the first report on the sequence of endo-1,3-fucanase. The novelty of FunA and its homologs in sequences and activity shed light on a novel glycoside hydrolase family, GH168.Candida auris is an emergent multidrug-resistant pathogenic yeast with an unprecedented ability for a fungal organism to easily spread between patients in clinical settings, leading to major outbreaks in healthcare facilities. The formation of biofilms by C. auris contributes to infection and its environmental persistence. Most antifungals and sanitizing procedures are not effective against C. auris, but antimicrobial nanomaterials could represent a viable alternative to combat the infections caused by this emerging pathogen. We have previously described an easy and inexpensive method to synthesize silver nanoparticles (AgNPs) in non-specialized laboratories. Here, we have assessed the antimicrobial activity of the resulting AgNPs on C. auris planktonic and biofilm growth phases. AgNPs displayed a strong antimicrobial activity against all the stages of all C. auris strains tested, representative of four different clades. Under planktonic conditions, minimal inhibitory concentration (MIC) values of AgNPs against the different strains were less then 0.5 μg ml-1; whereas calculated IC50 values for inhibition of biofilms formation were less then 2 μg ml-1 for all, but one of the C. auris strains tested. AgNPs were also active against preformed biofilms formed by all different C. auris strains, with IC50 values ranging from 1.2 to 6.2 μg ml-1. Overall, our results indicate potent activity of AgNPs against strains of C. auris, both under planktonic and biofilm growing conditions, and indicate that AgNPs may contribute to the control of infections caused by this emerging nosocomial threat.Invasive aspergillosis (IA) due to Aspergillus lentulus is associated with high mortality. In this study, we investigated the clinical and microbiological characteristics of 6 fatal cases of proven or probable IA caused by A. lentulus in China. Underlying immunosuppression, prior antifungal exposure, and intensive care unit (ICU) hospitalization were important risk factors for invasive A. lentulus infection. Phenotypic differences were observed for A. lentulus isolates including slower growth, reduced sporulation, and inability to grow at 48°C, compared with Aspergillus fumigatus complex. ITS sequencing was unable to distinguish A. lentulus from A. fumigatus, but sequencing of the benA, CaM, and rod A loci enabled reliable distinction of these closely related species. Phylogenetic analysis further confirmed that the ITS region had little variation within the Aspergillus section Fumigati while the benA gene offered the highest intraspecific discrimination. Microsatellite typing results revealed that only loci on chromosomes 1, 3, 5, and 6b generated detectable amplicons for identification. read more All A. lentulus isolates showed in vitro resistance to multiple antifungal drugs including amphotericin B (MIC range 4 to 8 μg/ml), itraconazole (MIC 2 μg/ml), voriconazole (MIC of 4-16 μg/ml), and posaconazole (MIC of 0.5-1 μg/ml). However, MECs for the echinocandin drugs ranged from 0.03-0.25, ≤0.008-0.015, and ≤0.015-0.03 μg/ml for caspofungin, micafungin, and anidulafungin, respectively. A. lentulus is an emerging fungal pathogen in China, causing fatal disease, and clinicians as well as laboratories should be alert to their increasing presence.
The exposure of house occupants to indoor air pollutants has increased in recent decades. Among microbiological contaminants, bacterial and fungal aerosols remain poorly studied and the debate on the impact of these aerosols on respiratory health is still open. This study aimed to assess the diversity of indoor microbial communities in relationship with the health of occupants.
Measurements were taken from dwellings of 2 cohorts in Brittany (France), one with children without any pathology and the other with children and adults with asthma. Thirty dust samples were analyzed by next generation sequencing with a 16S and 18S targeted metagenomics approach. Analysis of sequencing data was performed using qiime 2, and univariate and multivariate statistical analysis using R software and phyloseq package.
A total of 2,637 prokaryotic (589 at genus level) and 2,153 eukaryotic taxa were identified (856 fungal taxa (39%) and 573 metazoa (26%)). The four main bacterial phyla were identified Proteobacteria (53%), a might be associated to indoor air of asthmatic patients. Regarding fungi, a higher number of samples and sequencing with more depth could allow reaching significant signatures.
Our findings provide evidence that dust samples harbor a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples, a less easy strategy for the detection of eukaryotes at least using18S metagenomics approach. This study showed that the detection of some bacteria might be associated to indoor air of asthmatic patients. Regarding fungi, a higher number of samples and sequencing with more depth could allow reaching significant signatures.