Attenuating nicotines consequences with good thanks man antinicotine monoclonal antibodies

From World News
Jump to navigation Jump to search

Sulforaphane (SFN) is a powerful health-promoting compound found in broccoli in the form of its inactive precursor, glucoraphanin (GFN). SFN formation occurs through the enzymatic hydrolysis of glucoraphanin by myrosinase under specific chemical conditions. Its incorporation in food formulations has been hindered by the thermal instability of SFN and low concentration in Brassicaceae. Then, extracting SFN from broccoli at a temperature below 40 °C appears as an option to recover and stabilize SFN, aiming at delivering it as a nutraceutical. We studied an eco-friendly extraction process to obtain an SFN-rich extract from broccoli. The effect of the broccoli mass/solvent ratio, ethanol concentration in the extractant solution, and extraction time on the recovery of SFN, GFN, phenolic compounds, and antioxidant activity were studied through a Box-Behnken design. The regression models explained more than 70% of the variability in the responses, adequately representing the system. The experimental factors differently affected the bioactive compound recovery and antioxidant activity of the extracts. The extraction conditions that allowed the highest recovery of bioactive compounds and antioxidant activity were identified and experimentally validated. The results may provide the basis for the design of a process to produce a sulforaphane-rich food supplement or nutraceutical by using a GRAS extractant.The aim of the study is to evaluate oxidant-antioxidant balance as well as lysosomal and anti-protease activities in ovarian cancer since it has been emphasized that the crucial inducing factor of carcinogenesis may be reactive oxygen/nitrogen species or, more precisely, oxidative stress-induced inflammation. The study involved 15 women with ovarian cancer, aged 59.9 ± 7.8 years, and 9 healthy women aged 56.3 ± 4.3 years (controls). The study material was venous blood collected from fasting subjects. In erythrocytes, the activities of superoxide dismutase, glutathione peroxidase, and catalase, as well as concentrations of conjugated dienes (CDs) and thiobarbituric acid reactive substances (TBARS), were investigated. CD, TBARS, and vitamins A and E plasma concentrations were also determined. Moreover, total antioxidant capacity and concentrations of 4-hydroxynonenal adducts and 8-iso-prostaglandin F2α, as well as activities of acid phosphatase, arylsulfatase, cathepsin D, and α1-antitrypsin, were studied in serum. The vitamin E and 8-iso-prostaglandin F2α concentrations as well as arylsulfatase activity were lower in the women with cancer compared to the controls (p = 0.006, p = 0.03, p = 0.001, respectively). Selleck GSK-3 inhibitor In contrast, cathepsin D activity was lower in the controls (p = 0.04). In the peripheral blood of the women with cancer, oxidant-antioxidant and lysosomal disturbances were observed.Laser radiation has been shown to be a promising approach for in situ amorphization, i.e., drug amorphization inside the final dosage form. Upon exposure to laser radiation, elevated temperatures in the compacts are obtained. At temperatures above the glass transition temperature (Tg) of the polymer, the drug dissolves into the mobile polymer. Hence, the dissolution kinetics are dependent on the viscosity of the polymer, indirectly determined by the molecular weight (Mw) of the polymer, the solubility of the drug in the polymer, the particle size of the drug and the molecular size of the drug. Using compacts containing 30 wt% of the drug celecoxib (CCX), 69.25 wt% of three different Mw of polyvinylpyrrolidone (PVP PVP12, PVP17 or PVP25), 0.25 wt% plasmonic nanoaggregates (PNs) and 0.5 wt% lubricant, the effect of the polymer Mw on the dissolution kinetics upon exposure to laser radiation was investigated. Furthermore, the effect of the model drug on the dissolution kinetics was investigated using compacts containing 30 wt% of three different drugs (CCX, indomethacin (IND) and naproxen (NAP)), 69.25 wt% PVP12, 0.25 wt% PN and 0.5 wt% lubricant. In perfect correlation to the Noyes-Whitney equation, this study showed that the use of PVP with the lowest viscosity, i.e., the lowest Mw (here PVP12), led to the fastest rate of amorphization compared to PVP17 and PVP25. Furthermore, NAP showed the fastest rate of amorphization, followed by IND and CCX in PVP12 due to its high solubility and small molecular size.As microalgae are producers of proteins, lipids, polysaccharides, pigments, vitamins and unique secondary metabolites, microalgal biotechnology has gained attention in recent decades. Microalgae can be used for biomass production and to obtain biotechnologically important products. Here, we present the application of a method of producing a natural, biologically active composite obtained from unicellular microalgae of the genus Planktochlorella sp. as a modulator of the growth of microorganisms that can be used in the cosmetics and pharmaceutical industries by exploiting the phenomenon of photo-reprogramming of metabolism. The combination of red and blue light allows the collection of biomass with unique biochemical profiles, especially fatty acid composition (Patent Application P.429620). The ethanolic and water extracts of algae biomass inhibited the growth of a number of pathogenic bacteria, namely Enterococcus faecalis, Staphylococcus aureus PCM 458, Streptococcus pyogenes PCM 2318, Pseudomonas aeruginosa, Escherichia coli PCM 2209 and Candida albicans ATCC 14053. The algal biocomposite obtained according to our procedure can be used also as a prebiotic supplement. The presented technology may allow the limitation of the use of antibiotics and environmentally harmful chemicals commonly used in preparations against Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli or Candida spp.Infection is the major reason that people die from burns; however, traditional medical dressings such as gauze cannot restrain bacterial growth and enhance the healing process. Herein, an organic- and inorganic-base hydrogel with antibacterial activities was designed and prepared to treat burn wounds. Oxidized dextran (ODex) and adipic dihydrazide grafted hyaluronic acid (HA-ADH) were prepared, mixed with quaternized chitosan (HACC) and silver nanoparticles to fabricate Ag@ODex/HA-ADH/HACC hydrogel. The hydrogel, composed of nature biomaterials, has a good cytocompatibility and biodegradability. Moreover, the hydrogel has an excellent antibacterial ability and presents fast healing for burn wounds compared with commercial Ag dressings. The Ag@ODex/HA-ADH/HACC hydrogel will be a promising wound dressing to repair burn wounds and will significantly decrease the possibility of bacterial infection.