Cell reprogramming and epigenetic restoration
The enzyme 5-lipoxygenase (5-LO) converts arachidonic acid to leukotrienes, which mediate inflammation. The enzyme is known to contribute to organ fibrosis, but how it contributes to renal fibrosis is unclear. Here, we reported that fibrotic kidneys expressed high levels of 5-LO, and deleting the 5-LO gene mitigated renal fibrosis in mice subjected to unilateral ureteral obstruction (UUO), based on assays of collagen deposition, injury and inflammation. Mechanistically, the exogenous leukotrienes B4 and C4, the downstream products of 5-LO, could induce the epithelial-mesenchymal transition (EMT) in kidney epithelial cell cultures, based on assays of E-cadherin, vimentin and snail expression. Studies in UUO mice confirmed that 5-LO deletion inhibited the EMT in the obstructed kidney. More importantly, 5-LO inhibitor zileuton loaded in CREKA-Lip, which could target to fibrotic kidney, markedly attenuated UUO-induced renal fibrosis and injury by inhibiting the EMT in the obstructed kidney. Our results suggested that 5-LO activity may contribute to renal fibrosis by promoting renal EMT, implying that the enzyme may be a useful therapeutic target.With continued expansion of the coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome 2 (SARS-CoV-2), both antiviral drugs as well as effective vaccines are desperately needed to treat patients at high risk of life-threatening disease. Here, we present in vitro evidence for significant inhibition of SARS-CoV-2 by oleandrin and a defined extract of N. oleander (designated as PBI-06150). Using Vero cells, we found that prophylactic (pre-infection) oleandrin (as either the pure compound or as the active principal ingredient in PBI-06150) administration at concentrations as low as 0.05 µg/ml exhibited potent antiviral activity against SARS-CoV-2, with an 800-fold reduction in virus production, and a 0.1 µg/ml concentration resulted in a greater than 3000-fold reduction in infectious virus production. The half maximal effective concentration (EC50) values were 11.98 ng/ml when virus output was measured at 24 h post-infection, and 7.07 ng/ml measured at 48 h post-infection. Therapeuti treatment of SARS-CoV-2 and associated COVID-19 disease and potentially also for reduction of virus spread by persons diagnosed early after infection.Panaxynol (PAL) mainly comes from Umbelliferae plants, which has anti-inflammatory and neuroprotective activities. Lipopolysaccharide (LPS)-induced depression in mice was a classic model for studying the effects of drugs on depression in mice. The purpose of this study was to investigate the mechanism and effect of PAL on depression by LPS induced in mice. In the tail suspension test (TST) and forced swimming test (FST) results, PAL significantly reduced the immobility time of mice. In the result of the open field test (OFT) and the elevated plus maze test (EPM), improved their exploration ability. According to the results of ELISA, PAL could significantly reduce the tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) levels in serum. Increase the superoxide dismutase (SDO) level and decrease the malondialdehyde (MDA) level in hippocampus. According to Western blotting analysis results, PAL increased the protein expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB), decreased the nuclear transport of nuclear factor kappa-Bp65 (NF-κBp65) and phosphorylation of inhibitor of NF-κB (IκB-α). Meanwhile, PAL also inhibited the production of nitric oxide in BV-2 microglia and decreased the level of inflammatory factors. PAL also reduced levels of oxidative stress and inhibited protein expression in the NF-κB/IκB-α inflammatory pathway and increased the protein expression of BDNF/TrkB, thereby inhibiting the over-activation of BV-2 microglia. In conclusion, according to the results of the behavioral text, it is proved that PAL could effectively alleviate LPS induced depression behavior in mice. The mechanism may be that the anti-inflammatory and anti-oxidative stress effects of PAL reduce the release of inflammatory factors in the mouse brain. Meanwhile, PAL could improve brain neurotrophic factors, inhibit the excessive activation of BV-2 microglia, and further inhibit the depressive state of the mice.Cancer is a fatal disease with high mortality and low survival rate worldwide. At present, there is still no known cure for most cancers. Traditional Chinese medicine (TCM) represents a noteworthy reservoir for anticancer agents in drug discovery and development. Curcumae Rhizoma (called Ezhu in Chinese) is widely prescribed in TCM for anticancer therapy owing to its broad-spectrum antineoplastic activities. Especially, the terpenoids isolated from the essential oil of Curcumae Rhizoma form an integral part of cancer research and are well established as a potential anticancer agent. For example, β-elemene has been developed into a new drug for the treatment of solid tumors in China, and is currently undergoing clinical trials in the United States. https://www.selleckchem.com/products/bay-218.html The review aims to systematically summarize the recent advances on the anticancer effects and related molecular mechanisms of Curcumae Rhizoma, and its terpenoids (β-elemene, Furanodiene, Furanodienone, Germacrone, Curcumol, Curdione). In addition, we evaluated and compared the anticancer efficacy and clinical use of the terpenoids with combination therapies and traditional therapies. Therefore, this review provides sufficient evidence for the anticancer therapeutic potential of Curcumae Rhizoma and its terpenoids, and will contribute to the development of potential anticancer drugs.Liquid crystal biosensors serve an essential role to detect biomolecules and chemical events as an effective, simple and early detection tool. The detection of Human serum albumin protein by a room temperature liquid crystal 4́-pentyl-4-biphenylcarbonitrile has been investigated using multiple techniques such as Polarizing optical microscope, Raman spectroscopy and molecular docking. The dynamics of director transfigurations of the liquid crystal molecule in the presence of protein through interactions are reported in the study. The change in the alignment of liquid crystal molecules during the nematic phase is observed under a polarizing optical microscope. The interactions through which the liquid crystal molecules bind with protein is depicted from the docking analysis. The residues in the active sites confirm their presence from docking studies. The spectral behaviour has been investigated by temperature-dependent Raman spectroscopy. The findings from Raman spectra for the interaction between these compounds correlates with the residues confirmed from molecular docking analysis.