Creation Path associated with Wurtzitelike Cu2ZnSnSe4 Nanocrystals
Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists, which is time-consuming, high cost and waste materials. This research aims to integrate various computational tools, including machine learning, molecular dynamic simulation and physiologically based absorption modeling (PBAM), to enhance andrographolide (AG) /cyclodextrins (CDs) formulation design. The lightGBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy. AG/γ-CD inclusion complexes showed the strongest binding affinity, which was experimentally validated by the phase solubility study. The molecular dynamic simulation was used to investigate the inclusion mechanism between AG and γ-CD, which was experimentally characterized by DSC, FTIR and NMR techniques. PBAM was applied to simulate the in vivo behavior of the formulations, which were validated by cell and animal experiments. Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate (TPGS) significantly increased the intracellular uptake of AG in MDCK-MDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers. The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills, respectively. In conclusion, this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility, dissolution rate and bioavailability. The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.Rheumatoid arthritis (RA) is a common autoimmune disease characterized by joint inflammation and immune dysfunction. Although various therapeutic approaches have been utilized for the treatment of RA in clinical applications, the low responsiveness of RA patients and undesired systemic toxicity are still unresolved problems. Targeting the resolution pathway of inflammation with pro-resolving mediators would evoke the protective actions of patient for combating the inflammation. Ac2-26, a 25-amino acid peptide derived from Annexin A (a pro-resolving mediator), has shown good efficacy in the treatment of inflammatory disorders. However, the low bioavailability of Ac2-26 peptides hinders their efficacy in vivo. In this paper, we formed PEGylated lipid nanoparticles (LDNPs) by the co-assembly of l-ascorbyl palmitate (L-AP) and N-(carbonyl methoxypolyethylene glycol-2000)-1,2-distearoyl-sn‑glycero-3-phosphoethanolamine (DSPE-PEG2k) to encapsulate and deliver Ac2-26 peptides to the arthritic rats. They showed good stability and biocompatibility. After being intravenously administrated, Ac2-26 peptide-loaded PEGylated lipid nanoparticles (ADNPs) showed the prolonged in vivo circulation time and enhanced accumulation in inflamed sites. In vivo therapeutic evaluations revealed that ADNPs could attenuate synovial inflammation and improve joint pathology. Therefore, the pro-resolving therapeutic strategy using ADNPs is effective in RA treatment.In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published - to the best of our knowledge - which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.Targeted delivery of therapeutics for spinal cord injury (SCI) has been a long-term challenge due to the complexity of the pathological procession. Macrophage, as an immune cell, can selectively accumulate at the trauma site after SCI. This intrinsic targeting, coupled with good immune-escaping capacity makes macrophages an ideal source of biomimetic delivery carrier for SCI. Worth mentioning, macrophages have multiple polarization states, which may not be ignored when designing macrophage-based delivery systems. Herein, we fabricated macrophage membrane-camouflaged liposomes (RM-LIPs) and evaluated their abilities to extend drug circulation time and target the injured spinal cord. Specially, we detected the expression levels of the two main targeted receptors Mac-1 and integrin α4 in three macrophage subtypes, including unactivated (M0) macrophages, classically activated (M1) macrophages and alternatively activated (M2) macrophages, and compared targeting of these macrophage membrane-coated nanoparticles for SCI. The macrophage membrane camouflage decreased cellular uptake of liposomes in RAW264.7 immune cells and strengthened binding of the nanoparticle to the damaged endothelial cells in vitro. RM-LIPs can prolong drug circulation time and actively accumulate at the trauma site of the spinal cord in vivo. Besides, RM-LIPs loaded with minocycline (RM-LIP/MC) showed a comprehensive therapeutic effect on SCI mice, and the anti-pyroptosis was found to be a novel mechanism of RM-LIP/MC treatment of SCI. Moreover, the levels of Mac-1 and integrin α4 in macrophages and the targeting of RM-LIP for SCI were found to be independent of macrophage polarization states. Our study provided a biomimetic strategy via the biological properties of macrophages for SCI targeting and treatment.The present review sets out to discuss recent developments of the effects and mechanisms of carrier properties on their circulation time. For most drugs, sufficient in vivo circulation time is the basis of high bioavailability. Drug carrier plays an irreplaceable role in helping drug avoid being quickly recognized and cleared by mononuclear phagocyte system, to give drug enough time to arrive at targeted organ and tissue to play its therapeutic effect. The physical and chemical properties of drug carriers, such as size, shape, surface charge and surface modification, would affect their in vivo circulation time, metabolic behavior and biodistribution. see more The final circulation time of carriers is determined by the balance between macrophage recognitions, blood vessel penetration and urine excretion. Therefore, when designing the drug delivery system, we should pay much attention to the properties of drug carriers to get enough in vivo circulation time to arrive at target site eventually. This article mainly reviews the effect of carrier size, size, surface charge and surface properties on its circulation time in vivo, and discusses the mechanism of these properties affecting circulation time. This review has reference significance for the research of long-circulation drug delivery system.Acute kidney injury (AKI) is a serious kidney disease without specific medications currently except for expensive dialysis treatment. Some potential drugs are limited due to their high hydrophobicity, poor in vivo stability, low bioavailability and possible adverse effects. Besides, kidney-targeted drugs are not common and small molecules are cleared too quickly to achieve effective drug concentrations in injured kidneys. These problems limit the development of pharmacological therapy for AKI. Nanotherapeutics based on nanotechnology have been proved to be an emerging and promising treatment strategy for AKI, which may solve the pharmacological therapy dilemma. More and more nanotherapeutics with different physicochemical properties are developed to efficiently deliver drugs, increase accumulation and control release of drugs in injury kidneys and also directly as effective antioxidants. Here, we discuss the recent nanotherapeutics applied in the treatment and prevention of AKI with improved effectiveness and few side effects.Curcumin and its derivatives have good electrical and optical properties due to the highly symmetric structure of delocalized π electrons. Apart from that, curcumin and its derivatives can interact with numerous molecular targets, thereby exerting less side effects on human body. The fluorescence emission wavelength and fluorescence intensity of curcumin can be enhanced by modifying its π-conjugated system and ß-diketone structure. Some curcumin-based fluorescent probes have been utilized to detect soluble/insoluble amyloid-ß protein, intracranial reactive oxygen species, cysteine, cancer cells, etc. link2 Based on the binding characteristics of curcumin-based fluorescent probes with various target molecules, the factors affecting the fluorescence intensity and emission wavelength of the probes are analyzed, in order to obtain a curcumin probe with higher sensitivity and selectivity. Such an approach will be greatly applicable to in vivo fluorescence imaging.Nanotechnology has changed the entire paradigm of drug targeting and has shown tremendous potential in the area of cancer therapy due to its specificity. In cancer, several targets have been explored which could be utilized for the better treatment of disease. Mitochondria, the so-called powerhouse of cell, portrays significant role in the survival and death of cells, and has emerged as potential target for cancer therapy. Direct targeting and nanotechnology based approaches can be tailor-made to target mitochondria and thus improve the survival rate of patients suffering from cancer. With this backdrop, in present review, we have reemphasized the role of mitochondria in cancer progression and inhibition, highlighting the different targets that can be explored for targeting of disease. Moreover, we have also summarized different nanoparticulate systems that have been used for treatment of cancer via mitochondrial targeting.Strong infectivity enables coronavirus disease 2019 (COVID-19) to rage throughout the world. Moreover, the lack of drugs with definite therapeutic effects further aggravates the spread of the pandemic. Remdesivir is one of the most promising anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. However, the limited clinical effects make its therapeutic effect controversial, which may result from the poor accumulation and activation of remdesivir in the lung. link3 Therefore, we developed lyophilized remdesivir liposomes (Rdv-lips) which can be reconstituted as liposomal aerosol for pulmonary delivery to improve the in vivo behavior of existing remdesivir cyclodextrin conclusion compound (Rdv-cyc) injections. Liposome encapsulation endowed remdesivir with much higher solubility and better biocompatibility. The in vitro liposomal aerosol characterization demonstrated that Rdv-lips possessed a mass median aerodynamic diameter of 4.118 μm and fine particle fraction ( less then 5 μm) higher than 50%, indicating good pulmonary delivery properties.