Despair regulation techniques along with dimension The scoping evaluation

From World News
Jump to navigation Jump to search

We argue that behind these challenges underlie the distrust to local communities and tendency to retain power inequality that is tilted toward techno-bureaucracy, limitation of the program within sectoral boundary of forestry as well as lack of political commitment and overall weak capacity of the status apparatus. We highlight that revitalizing the CF program requires utilization of state restructuring process to expand its scope and improve its governance. Similarly, we emphasize the need for coordinated efforts among stakeholders to relax regulatory burdens, to engage local communities in policy processes, and to set up a capacity development system for supporting community rights mainly in the commercial management of community forests-to ensure that CF delivers.Nitrate accumulation causes long-time threat to aquatic animals in recirculating aquaculture system (RAS); thus, nitrate removal is also required in RASs. However, the lack of carbon sources makes denitrification difficult to function. Nitrate removal performance of an aerobic denitrifying and extracellular polyhydroxyalkanoate depolymerase-producing bacterium, Pseudomonas sp. AOB-7, using polyhydroxyalkanoate (PHA) granules as a solid sustained-release carbon source in RAS was evaluated. With the initial nitrate-N concentration of 140 mg/L, the high denitrification rates of 0.056 g NO3--N L-1 day-1 and 0.035 g NO3--N L-1 day-1 were achieved in denitrification medium containing poly-β-hydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), respectively. Significant erosions and pits formed on the surface of the granules made them a good biofilm carrier for AOB-7, and 3-hydroxybutyrate (3-HB) monomer was the major product released to aquatic phase, which was benefit to animals. SEM photos showed that AOB-7 entered and attached on the inside of the PHA particle holes. A 4-week application trial was conducted to reveal the effects of PHB (AOB-7) denitrifying agent and 3-HB produced on growth of zebrafish (Brachydanio rerio) by adding 0.1% (w/v) PHB (AOB-7) denitrifying agent. Result indicated that PHB (AOB-7) denitrifying agent can significantly reduce nitrate-N content in RASs. Compared with the control group, feed coefficient ratio reduced by 18% and weight gain ratio increased by 29% in the PHB (AOB-7) denitrifying agent group. 3-HB monomer produced during the denitrification was speculated to function as a prebiotic and promote zebrafish growth. KEY POINTS • AOB-7 showed a good aerobic denitrifying ability on PHA granules as sustained-release C source. • PHB (AOB-7) denitrifying agent can significantly reduce nitrate content in RAS. • R-3-HB monomer was the major product released to aquatic phase and function as a prebiotic.The anodized titanium nanotubes (TiO2-NTs) are considered to be a potential material in clinical therapy. To enhance the antibacterial property of TiO2-NTs, cefuroxime is introduced into TiO2-NTs, and then, different chitosan layers are coated to control the release of cefuroxime. M344 SEM and FTIR are adapted for the characterization of prepared TiO2-NTs. The effects of chitosan coating thickness on release of cefuroxime are also investigated, followed with the antibacterial property evaluation. The results show TiO2-NTs are fabricated by anodization method and cefuroxime is also successfully loaded into the nanotubes. The thickness of chitosan coating is an important factor to the release rate of cefuroxime. Antimicrobial detection and morphology observation of S. aureus show a sustained 7-day drug release and strong negative effect on bacteria. The approach in this study provides a broadly applicable method to fabricate titanium-based orthopedic implants with enhanced antibacterial properties.Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is necessary for a comprehensive analysis of lipid metabolism. Just recently, differential mobility spectrometry (DMS) has evolved as such a technology, helping to overcome several analytical challenges. We here set out to apply DMS and the Lipidyzer™ platform to obtain a comprehensive overview of leukocyte-related lipid metabolism in the resting and activated states. First, we tested the linearity and repeatability of the platform by using HL60 cells. We obtained good linearities for most of the thirteen analyzed lipid classes (correlation coefficient > 0.95), and good repeatability (%CV  less then  15). By comparing the lipidome of neutrophils (PMNs), monocytes (CD14+), and lymphocytes (CD4+), we shed light on leukocyte-specific lipid patterns as well as lipidomic changes occurring through differential stimulation. For example, at the resting state, PMNs proved to contain higher amounts of triacylglycerides compared to CD4+ and CD14+ cells. On the other hand, CD4+ and CD14+ cells contained higher levels of phospholipids and ceramides. Upon stimulation, diacylglycerides, hexosylceramides, phosphatidylcholines, phosphoethanolamines, and lysophosphoethanolamines were upregulated in CD4+ cells and PMNs, whereas CD14+ cells did not show significant changes. By exploring the fatty acid content of the significantly upregulated lipid classes, we mainly found increased concentrations of very long and polyunsaturated fatty acids. Our results indicate the usefulness of the Lipidyzer™ platform for studying cellular lipid metabolism. Its application allowed us to explore the lipidome of leukocytes. Graphical abstract.Complex processes meet and need Industry 4.0 capabilities. Shorter product cycles, flexible production needs, and direct assessment of product quality attributes and raw material attributes call for an increased need of new process analytical technologies (PAT) concepts. While individual PAT tools may be available since decades, we need holistic concepts to fulfill above industrial needs. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (Part 1) and smart sensors (Part 2). Part 2 of this feature article series describes the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality. The smart sensor consists of (i) chemical and process information in the physical twin by smart field devices, by measuring multiple components, and is fully connected in the IIoT 4.0 environment. In addition, (ii) it includes process intelligence in the digital twin, as to being able to generate knowledge from multi-sensor and multi-dimensional data.