Flexible Wearables with regard to Plant life

From World News
Jump to navigation Jump to search

An ultrasound frequency filter was designed and applied to each segmented PA signal in the frequency domain and inversely transformed into the time domain to correct for the differences in the fluence profiles at both wavelengths. Linear spectral unmixing was used to estimate sO2 before and after applying the ultrasound frequency filter. The estimated blood sO2 in the plastic tube for the porcine tissue experiment improved by 10.3% after applying the frequency filter when compared to the sO2 measured by a blood gas analyzer. For the in-vivo mouse experiments, the applied sO2 correction was 2.67, 1.33 and -3.33% for every mm of muscle tissue for mice breathing 100% O2, room air and 100% CO2, respectively. The approach presented here provides a new approach for fluence matching that can potentially improve the accuracy of sO2 estimates by removing the fluence depth dependence at different optical wavelengths.Life histories can influence the degree of parasite infestations on a host. Pressures exerted on hosts based on age and sex convey varying degrees of parasite prevalence due to differences in host lifestyles, but it is not known how interactions between different host traits affect tick numbers. The objective of this study was to determine if host characteristics (e.g., age, sex, weight, and their interactions) affect the mean number of ticks found on small mammals regardless of host species or habitat. Sherman live traps were placed in forest and grass/forb habitats representative of the southeastern United States. After capture, host characteristics were recorded, and hosts were then searched for ticks. A total of 281 small mammals (148 Peromyscus leucopus, 34 P. maniculatus, 76 Sigmodon hispidus, 16 Microtus pinetorum, and 7 Ochrotomys nuttalli) and 610 ticks (488 Dermacentor variabilis, 114 Ixodes scapularis, 1 Amblyomma americanum, and 7 A. maculatum) were collected in this study. Host's age, sex, and weight affected the number of ticks collected from small mammals and significant interaction effects between host traits occurred (weight by sex, weight by age, and sex by age). For instance, female subadult rodents had significantly more ticks compared to female adults, male subadults had significantly fewer ticks compared to male adults, and the number of ticks on a host increased as host body mass increased. These results support the hypothesis that the number of ticks vary on rodent hosts based on life histories and trait interactions. Therefore, understanding the behavioral mechanisms of a host can aid in the management of parasites in the environment.We documented the diversity of helminth parasites of 25 fish species from 8 families occurring in the headwaters of the Coatzacoalcos river basin. This river flows along the border between the states of Oaxaca and Veracruz, in the region of the Isthmus of Tehuantepec, in south-eastern Mexico, and in northern Central America. We recorded 48 species, representing 44 genera and 29 helminth families. Six of the 25 fish species were examined for helminths for the first time; 60 new host records were reported. Nematodes and trematodes were the most abundant taxonomic groups. The helminth fauna from our study area consists of primarily central American species. Most species recorded from this area have also been captured from freshwater bodies between the Isthmus of Tehuantepec and the Isthmus of Panama. However, three species, including an acanthocephalan and two nematodes, are likely endemic to this area. We argue that, in contrast to the presence of larval helminths, which mostly depends on the geographical location of water bodies, adult helminths are an integral and consistent component of the regional community. Data on taxonomic composition and distribution of helminth fauna reported in this paper, contribute to a better understanding of this faunal component in northern Central America (CA). Furthermore, knowledge of helminth parasites of freshwater fish from Neotropical Mexico and CA facilitates prediction of which parasite species is likely to infect fish in a specific geographical area.Stable isotope analysis offers a unique tool for comparing trophic interactions and food web architecture in ecosystems based on analysis of stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) in organisms. Clarias gariepinus were collected from six sites along the Vaal River, South Africa and were assessed for ectoparasites and endoparasites. Lamproglena clariae (Copepoda), Tetracampos ciliotheca and Proteocephalus glanduligerus (Cestoda), and larval Contracaecum sp. (Nematoda) were collected from the gills, intestine and mesenteries, respectively. Signatures of δ13C and δ15N were analysed in host muscle tissue and parasites using bulk stable isotope analysis. Variable stable isotope enrichment between parasites and host were observed; L. clariae and the host shared similar δ15N signatures and endoparasites being depleted in δ13C and δ15N relative to the host. Differences in stable isotope enrichment between parasites could be related to the feeding strategy of each parasite species collected. Geographic and spatial differences in enrichment of stable isotopes observed in hosts were mirrored by parasites. As parasites rely on a single host for meeting their nutritional demands, stable isotope variability in parasites relates to the dietary differences of host organisms and therefore variations in baseline stable isotope signatures of food items consumed by hosts.Toxoplasma gondii is considered a disease risk for many native Australian species. Feral cats are the key definitive host of T. gondii in Australia and therefore, investigating the epidemiology of T. gondii in cat populations is essential to understanding the risk posed to wildlife. Test sensitivity and specificity are poorly defined for diagnostic tests targeting T. gondii in cats and there is a need for validated techniques. This study focused on the feral cat population on Phillip Island, Victoria, Australia. We compared a novel real-time PCR (qPCR) protocol to the modified agglutination test (MAT) and used a Bayesian latent class modelling approach to assess the diagnostic parameters of each assay and estimate the true prevalence of T. gondii in feral cats. In addition, we performed multivariable logistic regression to determine risk factors associated with T. JTZ-951 gondii infection in cats. Overall T. gondii prevalence by qPCR and MAT was 79.5% (95% confidence interval 72.6-85.0) and 91.8% (84.6-95.8), respectively.