Heterogeneous unwanted side effects involving cortical inactivation within behaving pets
Background Haemoglobin vesicles (HbVs) are red blood cell (RBC) substitutes with a phospholipid bilayer membrane and a polyethylene modified surface (diameter=250 nm; P50=28 Torr). They can be preserved for years and can be used in patients of all blood types without the risk of infection. Their oxygen affinity can be modified by changing the allosteric effectors. Methods Left pneumonectomy was performed under mechanical ventilation on rats, followed by rapid exsanguination of ~30% of the total circulating blood volume. Rat RBCs shed in 5% human serum albumin (HSA) solution (rat RBC), HbV with high oxygen affinity in 5% albumin solution (low-P50 HbV, P50=9 Torr), normal HbV suspended in 5% albumin (HbV, P50=28 Torr) or 5% HSA was infused for resuscitation. Haemodynamics and oxygenation were evaluated. Results Systemic arterial blood pressure significantly decreased after exsanguination and increased after each infusion. In the HbV, low-P50 HbV and rat RBC groups, all rats were liberated from mechanical ventilation and blood pressure was stabilised, whereas 50% of the rats in the HSA group died within 1 hour after weaning from mechanical ventilation. The PaO2 in arterial blood for 1 hour after liberation from mechanical ventilation in the rat RBC, HbV and low-P50 HbV groups was 59.4±12.5, 58.3±10.1 and 70.5±14.5 mm Hg, respectively. The PaO2 in the low-P50 HbV group was significantly higher than those in the rat RBC and HbV groups (p=0.05 for both). Serum lactate elevations due to hypoxic damage were minimised by HbV, low-P50 HbV as well as rat RBCs. LDN-193189 supplier Conclusions The oxygen-carrying ability of HbV was comparable to that of rat RBCs, even under impaired lung function after pneumonectomy. HbVs with high oxygen affinity may have more beneficial effects on oxygenation in pulmonary resection.Background Current data suggest that COVID-19 is less frequent in children, with a milder course. However, over the past weeks, an increase in the number of children presenting to hospitals in the greater Paris region with a phenotype resembling Kawasaki disease (KD) has led to an alert by the French national health authorities. Methods Multicentre compilation of patients with KD in Paris region since April 2020, associated with the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ('Kawa-COVID-19'). A historical cohort of 'classical' KD served as a comparator. Results Sixteen patients were included (sex ratio=1, median age 10 years IQR (4·7 to 12.5)). SARS-CoV-2 was detected in 12 cases (69%), while a further three cases had documented recent contact with a quantitative PCR-positive individual (19%). Cardiac involvement included myocarditis in 44% (n=7). Factors prognostic for the development of severe disease (ie, requiring intensive care, n=7) were age over 5 years and ferritinaemia >1400 µg/L. Only five patients (31%) were successfully treated with a single intravenous immunoglobulin (IVIg) infusion, while 10 patients (62%) required a second line of treatment. The Kawa-COVID-19 cohort differed from a comparator group of 'classical' KD by older age at onset 10 vs 2 years (p less then 0.0001), lower platelet count (188 vs 383 G/L (p less then 0.0001)), a higher rate of myocarditis 7/16 vs 3/220 (p=0.0001) and resistance to first IVIg treatment 10/16 vs 45/220 (p=0.004). Conclusion Kawa-COVID-19 likely represents a new systemic inflammatory syndrome temporally associated with SARS-CoV-2 infection in children. Further prospective international studies are necessary to confirm these findings and better understand the pathophysiology of Kawa-COVID-19. Trial registration number NCT02377245.The COVID-19 pandemic forces the whole rheumatic and musculoskeletal diseases community to reassemble established treatment and research standards. Digital crowdsourcing is a key tool in this pandemic to create and distil desperately needed clinical evidence and exchange of knowledge for patients and physicians alike. This viewpoint explains the concept of digital crowdsourcing and discusses examples and opportunities in rheumatology. First experiences of digital crowdsourcing in rheumatology show transparent, accessible, accelerated research results empowering patients and rheumatologists.Orosomucoid-like proteins (ORMs) interact with serine palmitoyltransferase (SPT) to negatively regulate sphingolipid biosynthesis, a reversible process critical for balancing the intracellular sphingolipid levels needed for growth and programmed cell death. Here we show that ORM1 and ORM2 are essential for lifecycle completion in Arabidopsis thaliana. Seeds from orm1-/- orm2-/- mutants (generated by crossing CRISPR/Cas9 knockout mutants for each gene) accumulated high levels of ceramide, pointing to unregulated sphingolipid biosynthesis. orm1-/- orm2-/- seeds were nonviable, displayed aberrant embryo development, and had >80% reduced oil content vs. wild-type seeds. This phenotype was mimicked in Arabidopsis seeds expressing the SPT subunit LCB1 lacking its first transmembrane domain, which is critical for ORM-mediated regulation of SPT. We identified a mutant for ORM1 lacking one amino acid (Met51) near its second transmembrane domain that retained its membrane topology. Expressing this allele in the orm2 background yielded plants that did not advance beyond the seedling stage, hyperaccumulated ceramides, and showed altered organellar structures and increased senescence and pathogenesis-related gene expression. These seedlings also showed upregulated expression of genes for sphingolipid catabolic enzymes, pointing to additional mechanisms for maintaining sphingolipid homeostasis. ORM1 lacking Met51 had strongly impaired interactions with LCB1 in yeast (Saccharomyces cerevisiae) model), providing structural clues about regulatory interactions between ORM and SPT.Background China has been facing nationwide air pollution at unprecedented high levels primarily from fossil-fuel combustion in the past decade. However, few studies have been conducted on the adverse effect of severe air pollution on lung development in school-age children. Methods Using wellness check and air pollution data from 2014 to 2017, we conducted a retrospective analysis of lung development in 21 616 school-age children from Shijiazhuang and Qingdao from North China with severe vs mild air pollution. Linear mixed effects model was performed to assess the effect of air pollution on forced vital capacity (FVC) growth. Results Exposure to severe air pollution was associated with a dramatic reduction in annual FVC growth rate (-71.3 mL, p less then 0.001). In addition, every 10 μg/m3 increase in annual PM2.5 level was associated with a reduction of annual FVC growth by 12.2 mL ( p less then 0.001). Sex discrepancy (boys vs girls) in FVC growth was greater in Qingdao (35.4 mL/year, 95% CI 26.0 to 44.7) than in Shijiazhuang (19.