Kid meal microstructure and consuming actions An organized evaluate
We performed extensive evaluation experiments on the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) databases to validate MOFGCNs performance. The experimental results show that MOFGCN is superior to the state-of-the-art algorithms in predicting missing drug responses. It also leads to higher performance in predicting drug responses for new cell lines, new drugs, and targeted drugs.Knee osteoarthritis (OA) is a chronic disease that considerably reduces patients' life quality. Preventive therapies require early detection and lifetime monitor of OA progression. In the clinical environment, the severity of OA is classified by Kellgren and Lawrence (KL) grading system, ranging from KL-0 to KL-4. Dizocilpine nmr Recently, deep learning methods were applied to OA severity assessment to improve the accuracy and efficiency. Researchers fine-tuned convolution neural networks (CNN) on the OA dataset and built end-to-end approaches. However, this task is still challenging due to the ambiguity between adjacent grading, especially in early-stage OA. Low confident samples, which are less representative than the typical ones, undermine the training process. Targeting the uncertainty in the OA dataset, we propose a novel learning scheme that dynamically separates the data into two sets according to their reliability. Besides, we design a hybrid loss function to help CNN learn from the two sets accordingly. With the proposed approach, we emphasize the typical samples and control the impacts of low confident cases. Experiments are conducted in a five-fold manner. Our method achieves a mean accuracy of 70.13\% on the five-class OA assessment task, which outperforms all other start-of-art methods. Despite that early-stage OA detection still benefits from the human intervention of lesion region selection, our approach achieves superior performance on the KL-0 vs. KL-2 task. Moreover, we design an experiment to validate large-scale automatic data refining during training. The result verifies the ability of characterizing low confidence samples by our approach. Dataset used in this paper was obtained from the osteoarthritis Initiative.Early diagnosis of neurodegenerative disorders, such as Alzheimer's Disease (AD), is very important to reduce their effects and to improve both quality and life expectancy of patients. In this context, it is generally agreed that handwriting is one of the first skills altered by the onset of such diseases. For this reason, the analysis of handwriting and the study of its alterations have become of great interest in order to formulate the diagnosis as soon as possible. A fundamental aspect for the use of these techniques is the definition of effective features, which allows the system to distinguish the natural alterations of handwriting due to age, from those caused by neurodegenerative disorders. Starting from these considerations, the aim of our study is to verify whether the combined use of both shape and dynamic features allows a decision support system to improve performance for AD diagnosis. To this purpose, starting from a database of on-line handwriting samples, we generated for each of them an off-line synthetic color image, where the color of each elementary trait encodes, in the three RGB channels, the dynamic information associated with that trait. In order to verify the importance and the specific role played by shape information, we also generated an off-line synthetic binary image for each handwriting sample, where background pixels have white color, while those corresponding to the traits have black color. Finally, we exploited the ability of Convolutional Neural Network (CNN) to automatically extract features on both color and binary images. We carried out a large set of experiments for comparing the results obtained by using on-line features with those obtained by using the off-line features provided by CNN on both color and binary images.This study investigates the beat-to-beat relationships among Pulse Transit Times (PTTs) and Pulse Arrival Times (PATs) concomitantly measured from the heart to finger, ear and forehead vascular districts, and their correlations with continuous finger blood pressure. These aspects were explored in 22 young volunteers at rest and during cold pressure test (CPT, thermal stress), handgrip (HG, isometric exercise) and cyclo-ergometer pedalling (CYC, dynamic exercise). The starting point of the PTT measures was the opening of the aortic valve detected by the seismocardiogram. Results indicate that PTTs measured at the ear, forehead and finger districts are uncorrelated each other at rest, and during CPT and HG. The stressors produced district-dependent changes in the PTT variability. Only the dynamic exercise was able to induce significant changes with respect to rest in the PTTs mean values (-40%, -36% and -17%, respectively for PTTear, PTTfore, PTTfinger,), and synchronize their modulations. Similar trends were observed in the PATs. The isovolumic contraction time decreased during the stressors application with a minimum at CYC (-25%) reflecting an augmented heart contractility. The increase in blood pressure (BP) at CPT was greater than that at CYC (137 vs. 128 mmHg), but the correlations between beat-to-beat transit times and BP were maximal at CYC (PAT showed a higher correlation than PTT; correlations were greater for systolic than for diastolic BP). This suggests that pulse transit times do not always depend directly on the beat-to-beat BP values but, under specific conditions, on other factors and mechanisms that concomitantly also influence BP.Accompanied with the rapid increase of the demand for routine examination of leucorrhea, efficiency and accuracy become the primary task. However, in super depth of field (SDoF) system, the problem of automatic detection and localization of cells in leucorrhea micro-images is still a big challenge. The changing of the relative position between the cell center and focus plane of microscope lead to variable cell morphological structure in the two-dimensional image, which is an important reason for the low accuracy of current deep learning target detection algorithms. In this paper, an object detection method based on Retinanet in state of super depth of field is proposed, which can achieve high precision detecting of leucorrhea components by the SDoF feature aggregation module. Compared with the current mainstream algorithms, the mean average accuracy (mAP) index has been improved significantly, the mAP index is 82.7% for SDoF module and 83.0% for SDoF+ module, with an average increase of more than 10%. These improved features can significantly improve the efficiency and accuracy of the algorithm. The algorithm proposed in this paper can be integrated into the leucorrhea automatic detection system.Medical instrument segmentation in 3D ultrasound is essential for image-guided intervention. However, to train a successful deep neural network for instrument segmentation, a large number of labeled images are required, which is expensive and time-consuming to obtain. In this article, we propose a semi-supervised learning (SSL) framework for instrument segmentation in 3D US, which requires much less annotation effort than the existing methods. To achieve the SSL learning, a Dual-UNet is proposed to segment the instrument. The Dual-UNet leverages unlabeled data using a novel hybrid loss function, consisting of uncertainty and contextual constraints. Specifically, the uncertainty constraints leverage the uncertainty estimation of the predictions of the UNet, and therefore improve the unlabeled information for SSL training. In addition, contextual constraints exploit the contextual information of the training images, which are used as the complementary information for voxel-wise uncertainty estimation. Extensive experiments on multiple ex-vivo and in-vivo datasets show that our proposed method achieves Dice score of about 68.6%-69.1% and the inference time of about 1 sec. per volume. These results are better than the state-of-the-art SSL methods and the inference time is comparable to the supervised approaches.A connection between the general linear model (GLM) with frequentist statistical testing and machine learning (MLE) inference is derived and illustrated. Initially, the estimation of GLM parameters is expressed as a Linear Regression Model (LRM) of an indicator matrix; that is, in terms of the inverse problem of regressing the observations. Both approaches, i.e. GLM and LRM, apply to different domains, the observation and the label domains, and are linked by a normalization value in the least-squares solution. Subsequently, we derive a more refined predictive statistical test the linear Support Vector Machine (SVM), that maximizes the class margin of separation within a permutation analysis. This MLE-based inference employs a residual score and associated upper bound to compute a better estimation of the actual (real) error. Experimental results demonstrate how parameter estimations derived from each model result in different classification performance in the equivalent inverse problem. Moreover, using real data, the MLE-based inference including model-free estimators demonstrates an efficient trade-off between type I errors and statistical power.The generation-based data augmentation method can overcome the challenge caused by the imbalance of medical image data to a certain extent. However, most of the current research focus on images with unified structure which are easy to learn. What is different is that ultrasound images are structurally inadequate, making it difficult for the structure to be captured by the generative network, resulting in the generated image lacks structural legitimacy. Therefore, a Progressive Generative Adversarial Method for Structurally Inadequate Medical Image Data Augmentation is proposed in this paper, including a network and a strategy. Our Progressive Texture Generative Adversarial Network alleviates the adverse effect of completely truncating the reconstruction of structure and texture during the generation process and enhances the implicit association between structure and texture. The Image Data Augmentation Strategy based on Mask-Reconstruction overcomes data imbalance from a novel perspective, maintains the legitimacy of the structure in the generated data, as well as increases the diversity of disease data interpretably. The experiments prove the effectiveness of our method on data augmentation and image reconstruction on Structurally Inadequate Medical Image both qualitatively and quantitatively. Finally, the weakly supervised segmentation of the lesion is the additional contribution of our method.The gait kinematics of an individual is affected by various factors, including age, anthropometry, gender, and disease. Detecting anomalous gait features aids in the diagnosis and treatment of gait-related diseases. The objective of this study was to develop a machine learning method for automatically classifying five anomalous gait features, i.e., toe-out, genu varum, pes planus, hindfoot valgus, and forward head posture features, from three-dimensional data on gait kinematics. Gait data and gait feature labels of 488 subjects were acquired. The orientations of the human body segments during a gait cycle were mapped to a low-dimensional latent gait vector using a variational autoencoder. A two-layer neural network was trained to classify five gait features using logistic regression and calculate an anomalous gait feature vector (AGFV). The proposed network showed balanced accuracies of 82.8% for a toe-out, 85.9% for hindfoot valgus, 80.2% for pes planus, 73.2% for genu varum, and 92.9% for forward head posture when the AGFV was rounded to the nearest zero or 1.