Limited neutralization associated with genuine SARSCoV2 variants holding E484K in vitro
The most common POPs were endosulfan I, endosulfan II, endosulfan sulfate, BDE-47 and BDE-99, present on >90% of the sampling days. OCPs in PM2.5 and PBDEs in PM10 showed seasonal variability. Higher PBDEs concentration in both particle sizes were observed at east and southeast of the MZMV, where one of the biggest landfills and wastewater treatment plants are located. OCPs in PM10 were mainly emitted from agricultural areas located to the southwest, southeast and east of the MZMV. OCPs in PM2.5 showed a regional contribution from the north and introduced into the valley. OCP degradation products were dominant over native OCPs, indicating no fresh OCP use. POPs comparison with other cities was made. Agreements and commissions created by the Mexican government reduced OCPs emissions, however, more effort must be made to control PBDE emission sources.Bisphenol A (BPA) is a highly pervasive chemical in consumer products with its ascribed endocrine-disrupting properties. Several studies have shown the cytotoxic, genotoxic, and carcinogenic property of BPA over a multitude of tissues. GLXC25878 Although BPA exposure has earlier been implicated in female infertility, the underlying molecular mechanisms explaining the toxicity of BPA in the ovary remains less understood. In the present study, a plausible correlation between redox balance or inflammatory signaling and reproductive fitness upon BPA exposure has been examined in zebrafish (Danio rerio) ovary. Congruent with significant alteration of major antioxidant enzymes (SOD1, SOD2, catalase, GPx1α, GSTα1) at the transcript level, 30 d BPA exposure at environmentally relevant concentrations (1, 10 and 100 μg L-1) promotes ovarian ROS/RNS synthesis, lipid peroxidation but attenuates catalase activity indicating elevated stress response. BPA promotes a sharp increase in ovarian p38 MAPK, NF-κB phosphorylation (activation), inducible nitric oxide synthase (Nos2a), and pro-inflammatory cytokines (TNF-α and IL-1β) expression, the reliable markers for inflammatory response. Congruent to an increased number of atretic follicles, BPA-exposed zebrafish ovary reveals elevated Bax/Bcl2 ratio, activation of caspase-8, -3 and DNA breakdown suggesting heightened cell death. Importantly, significant alteration in nuclear estrogen receptor (ER) transcripts (esr1, esr2a, and esr2b) and proteins (ERα, ERβ), gonadotropin receptors, and markers associated with steroidogenesis and growth factor gene expression in BPA-exposed ovary correlates well with impaired ovarian functions and maturational response. Collectively, elevated oxidative/nitrosative stress-mediated inflammatory response and altered ER expression can influence ovarian health and reproductive fitness in organisms exposed to BPA environment.In this study, we present the application of a dual-isotope approach for the source apportionment of polycyclic aromatic hydrocarbons (PAHs) and black carbon (BC) in the East China Sea (ECS). The δ13C and δ2H isotope signatures of the PAHs were determined from surface sediments collected from the ECS. A Bayesian Markov chain Monte Carlo (MCMC) model was used to the environmental source identifications with dual-isotope PAHs data. The results indicate that the coal combustion source is predominant (with average of 41%) in the ECS. Liquid fossil fuels combustion, biomass combustion, and petrogenic sources account for 23%, 20%, and 12% of the total PAH burden, respectively. Additionally, we also determine the stable and radio carbon isotopes (δ13C and Δ14C) of total BC in sediment samples of the ECS. The results demonstrate the quantitative source apportionments for different sources, reflecting the contributions of fossil fuels (coal combustion and petroleum-related emissions), biomass (C3 and C4 plants) combustion, and rock-weathering sources. The fossil combustion in BC accounts for 67%, with 23% for biomass sources, meanwhile the rock weathering source in BC is an average of 10%. These results show a remarkable similarity and extensive homologies at source apportionment of PAHs and BC in the ECS, even though some differences in source mechanisms and processes. These findings on the environmental source apportionment will provide a reference for improved emission inventories, and will help to provide guidance for the efforts to mitigate environmental pollution in the coastal areas and marginal sea.Inflammation and the coagulation cascade are considered to be the potential mechanisms of ambient particulate matter (PM) exposure-induced adverse cardiovascular events. Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and fibrinogen are arguably the four most commonly assayed markers to reflect the relationships of PM with inflammation and blood coagulation. This review summarized and quantitatively analyzed the existing studies reporting short- and long-term associations of PM2.5(PM with an aerodynamic diameter ≤2.5 μm)/PM10 (PM with an aerodynamic diameter≤10 μm) with important inflammation and blood coagulation markers (TNF-α, IL-6, IL-8, fibrinogen). We reviewed relevant studies published up to July 2020, using three English databases (PubMed, Web of Science, Embase) and two Chinese databases (Wang-Fang, China National Knowledge Infrastructure). The OHAT tool, with some modification, was applied to evaluate risk of bias. Meta-analyses were conducted with random-effects modth TNF-α and fibrinogen. Future epidemiological studies should address the role long-term PM exposure plays in inflammation and blood coagulation markers level change.The current global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a tremendous public health challenge globally. While the respiratory transmission of SARS-CoV-2 has been established, evolving reports on the impact of the gastrointestinal system and the prolonged faecal shedding of SARS-CoV-2 show the likelihood of faecally mediated transmission. The increasing evidential presence of SARS-CoV-2 in wastewater and faecal material poses a significant public health threat which may potentiate global vulnerability to high risk of human exposure through environmental drivers especially in less developed countries. While extensively exploring the likelihood of faecally mediated SARS-CoV-2 transmission, infection control and prevention measures aimed at mitigating this pandemic should holistically include environmental drivers.