Low SelfControl and Criminal offenses at the end of Their adult years
Further, five degradation pathways of CIP in SPEF system were proposed including the attack on piperazine ring, oxidation on cyclopropyl group, decarboxylation and hydroxyl radical addition, oxidation on benzene group and defluorination. The study provides insights into the enhancement of EF and SPEF performance and the degradation pathway of CIP in SPEF.Thermal plasma treatment has been considered as one of promising methods for fly ash disposal. In this study, firstly, the characteristics of municipal solid waste incineration (MSWI) fly ash and sewage sludge incineration (SSI) fly ash were analyzed, followed by the raw material formulations of low melting temperature determined by thermodynamic equilibrium calculation. Then verified experiments were carried out by thermal plasma system, focused on the formation condition of vitrified slags with various CaO-SiO2-Al2O3 ratios and the influence factors of heavy metals (Cd, Cr, Ni, Pb, Zn, Cu) transference. According to the results During the co-treatment process of fly ashes, a lower temperature of vitrified slag formation as low as 1230 ℃ was observed. Vitrification is determined by the molten phase content during melting process, the correlation coefficient between the glass phase content of slag and the molten phase content was 0.81 (P less then 0.01). CaO content of raw materials was a major element for the volatilization of Cd and Pb. High Al2O3 content can remain more Cr, Cu and Ni in slags, but it is not conducive to the solidification of Zn. The synthetic toxicity index of heavy metals would greatly reduce from 23153.15 to 663.29-820.63 after thermal plasma treatment.Environmentally friendly ammonia (NH3) decomposition has attracted a lot of interests in recent years to resolve the issue of water eutrophication from a wastewater and achieve a clean H2 storage. Here, we report a novel strategy for solar-driven ammonia decomposition by introducing a highly-activated iron phosphate (FePi) over-layer on the surface of α-Fe2O3 nanorods photoanode (FePi/Fe2O3), and innovatively propose a photoelectrochemical (PEC) ammonia degradation system with enhanced performance. After a facile electrochemical (EC) activation, the FePi over-layer is converted into FeOOH. The EC-activated over-layer provides the efficient active sites for the ammonia adsorption process, which promotes the high catalytic kinetics for ammonia oxidation reaction (AOR). Due to the synergistic effect of the electrocatalytic and the photocatalytic process, the FePi/Fe2O3 exhibits the enhanced PEC AOR performance, which competes with water oxidation reaction (WOR). Comparing to the initial concentration of ammonia, the FePi/Fe2O3 achieves a 54.4% ammonia degradation rate within 3 h at 1.23 V vs. reversible hydrogen electrode (RHE) under 1 sun illumination, which demonstrates the reliable ammonia decomposition performance. This study confirms that it is feasible to achieve PEC ammonia decomposition in an aqueous solution without chloride mediators and provides a promising strategy for the harmless treatment of ammonia wastewater.The transport of microplastic tracer particles in comparison to the solute conservative tracer uranine was experimentally investigated in a shallow alluvial aquifer over distances from 3.1 to 200 m by means of a natural-gradient tracer test. The microplastic particles (MPs) with diameters of 1, 2 and 5 µm were artificially injected into an observation well to simulate microplastic transport; water samples were taken at eleven observation wells further downgradient over a time span of 171 days. In total, 44 individual breakthrough curves of microplastics and uranine were obtained at all sampling sites, allowing a detailed analysis of the size-dependency of microplastics transport in porous media at field scale. Results clearly show that (i) microplastics of 1-5 µm can be transported in significant amounts in sand-and-gravel aquifers; (ii) peak concentrations of microplastics can exceed those of conservative solutes, in particular for longer flow distances; (iii) microplastic peak velocities are in a similar range or exceed those of conservative solutes; (iv) retardation and filtration processes did not efficiently attenuate microplastics in groundwater at the study site. To our best of knowledge, this is the first experimental field evidence for microplastics transport over large distances in an alluvial aquifer.In India, sewage (partially-treated/ untreated) is randomly used for irrigation because of easy availability and presence of residual organics and nutrients. However, data on the occurrence of contaminants of emerging concerns (CECs) such as pharmaceuticals and personal care products (PPCPs) and antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in sewage is scarce in Indian perspective. Herein, for the first time, we present a quantitative contamination profiling of selected PPCPs and antibiotic resistance in untreated and biologically-treated sewage from three different sewage treatment plants, located in northern and central part of India. Profiling of PPCPs were done using LC-ESI-MS/MS whereas antibiotic resistance was analyzed using gradient PCR and qPCR techniques. PPCPs were detected both in untreated and treated samples (0.4 - 1340 μg/L). A reduction in ARB and ARG load (2-3 log) and an increase in ARG copy number with respect to beta lactams and tetracycline were observed in treated sewage. Triclosan, estrone and 17α-ethynylestradiol, ubiquitous in all samples, could be used as markers for performance monitoring of sewage treatment facilities. The results obtained in this study help evaluate health and ecological risks associated with the presence of CECs in treated sewage used for irrigation and frame future policies.The present study reveals the effect of mercury (Hg) and sodium nitroprusside (SNP) on plant growth and metabolism in soybean cultivars (Pusa-24, Pusa-37and Pusa-40). Mercury stress decreased growth and biomass yield, and gas exchange attributes in all soybean cultivars. External supplementation of SNP mitigated Hg toxicity by improving growth and gas exchange parameters. Electrolyte leakage (EL) increased accompanied with elevated levels of malondialdehyde (MDA) and H2O2 under Hg stress, however, they were found to be reduced in all cultivars upon the exogenous application of SNP. The activities of anti-oxidative enzymes, superoxide dismutase and catalase (SOD and CAT) and those enzymes involved in the ascorbate-glutathione pathway were impaired by Hg stress, but they were regulated by the application of SNP. Accumulation of Hg and NO in the shoots and roots were also regulated by the application of NO. PIK-90 mouse Although, all three cultivars were affected by Hg stress, Pusa-37 was relatively less affected. Mercury stress affected the growth and development of different soybean cultivars, but Pusa-37 being tolerant was less affected.