Making the Invisible Obvious Advanced Neuroimaging Techniques in Key Epilepsy
After flight, there was a 14% reduction in resting metabolism but no change in peak metabolism. Interestingly, the reduction in resting metabolism was unrelated to flight duration or to change in fat-free body mass, indicating that protein metabolism in flight is unlikely to have evolved as an energy-saving measure to aid stopover refueling, but metabolic reduction itself is likely to be beneficial to migratory birds arriving in novel habitats.Vibrio is a large and diverse genus of bacteria, of which most are nonpathogenic species found in the aquatic environment. However, a subset of the Vibrio genus includes several species that are highly pathogenic, either to humans or to aquatic animals. In recent years, Danio rerio, commonly known as the zebrafish, has emerged as a major animal model used for studying nearly every aspect of biology, including infectious diseases. Zebrafish are especially useful because the embryos are transparent, larvae are small and facilitate imaging studies, and numerous transgenic fish strains have been constructed. Zebrafish models for several pathogenic Vibrio species have been described, and indeed a fish model is highly relevant for the study of aquatic bacterial pathogens. Here, we summarize the zebrafish models that have been used to study pathogenic Vibrio species to date.Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptrsible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.Mycoplasma ovipneumoniae belongs to Mycoplasma, a genus containing the smallest self-replicating microorganisms, and causes infectious pleuropneumonia in goats and sheep. Nucleotide-binding oligomerization domain-containing protein (NOD2), an intracellular pattern recognition receptor, interacts with muramyl dipeptide (MDP) to recognize bacterial peptidoglycans and is involved in autophagy induction. However, there have been no reports about NOD recognition of mycoplasmas or M. ovipneumoniae-induced autophagy. In this study, we sought to determine the role of NOD2 in M. ovipneumoniae-induced autophagy using Western blotting, immunofluorescence, real-time PCR (RT-PCR), and color-changing unit (CCU) analysis. M. ovipneumoniae infection markedly increased NOD2 but did not increase NOD1 expression in RAW 264.7 cells. Treating RAW 264.7 cells with MDP significantly increased colocalization of M. ovipneumoniae and LC3, whereas treatment with NOD inhibitor, NOD-IN-1, decreased colocalization of M. ovipneumoniae and NOD2 was activated by M. ovipneumoniae even when peptidoglycans were not present. We also observed that both NOD2 and JNK pathway activation promoted M. ovipneumoniae-induced autophagy.During sporulation of Bacillus subtilis, the cell cycle is reorganized to generate separated prespore and mother cell compartments, each containing a single fully replicated chromosome. The process begins with reorganization of the nucleoid to form an elongated structure, the axial filament, in which the two chromosome origins are attached to opposite cell poles, with the remainder of the DNA stretched between these sites. When the cell then divides asymmetrically, the division septum closes around the chromosome destined for the smaller prespore, trapping the origin-proximal third of the chromosome in the prespore. A translocation pore is assembled through which a DNA transporter, SpoIIIE/FtsK, transfers the bulk of the chromosome to complete the segregation process. Although the mechanisms involved in attaching origin regions to the cell poles are quite well understood, little is known about other aspects of axial filament morphology. We have studied the behavior of the terminus region of the chromosome durohesion of the normally separated sister chromosome termini plays an important role in axial filament formation.Cohesion of biofilms made by Yersinia pestis and Yersinia pseudotuberculosis has been attributed solely to an extracellular polysaccharide matrix encoded by the hms genes (Hms-dependent extracellular matrix [Hms-ECM]). However, mutations in the Y. pseudotuberculosis BarA/UvrY/CsrB regulatory cascade enhance biofilm stability without dramatically increasing Hms-ECM production. We found that treatment with proteinase K enzyme effectively destabilized Y. pseudotuberculosiscsrB mutant biofilms, suggesting that cell-cell interactions might be mediated by protein adhesins or extracellular matrix proteins. We identified an uncharacterized trimeric autotransporter lipoprotein (YPTB2394), repressed by csrB, which has been referred to as YadE. Biofilms made by a ΔyadE mutant strain were extremely sensitive to mechanical disruption. Overexpression of yadE in wild-type Y. pseudotuberculosis increased biofilm cohesion, similar to biofilms made by csrB or uvrY mutants. We found that the Rcs signaling cascade, which repressseudotuberculosis but which has been inactivated in Y. pestis, perhaps because it is not compatible with the Hms polysaccharide that is crucial for biofilms inside fleas. We also reveal that the Rcs signaling cascade, which represses Hms expression, activates YadE in Y. find more pseudotuberculosis The ability of Y. pseudotuberculosis to use polysaccharide or YadE protein for cell-cell adhesion may help it produce biofilms in different environments.