Noncanonical Amino Substrates of At the coli AminoacyltRNA Synthetases

From World News
Jump to navigation Jump to search

Tongue cancer is one of the most common oral malignancies. Quisinostat is a histone deacetylase inhibitor with antitumor activity. The aim of this study was to evaluate the effects of quisinostat on the viability of tongue squamous cell carcinoma (TSCC) cells (CAL-27, TCA-8113) in vitro and in vivo. Cell viability, cell morphological observation, scratch wound-healing assay, transwell migration assay, transmission electron microscope, flow cytometry and cellular reactive oxygen species were assessed in vitro. The results showed that quisinostat can significantly inhibit the viability, growth and migration of TSCC cells. And quisinostat could significantly induce TSCC cells apoptosis, pyroptosis, and ferroptosis. Quisinostat significantly inhibited tumor tissue growth in animal experiments. Up-regulation of the expression of Bax, cleaved-caspase3, caspase-1, p53, phospho-p53 and down-regulated of the expression of caspase-3, Bcl-2, GPX4 in cell lines and tumor tissues of nude mice were observed by Western blotting analysis. Up-regulation of the expression of caspase-1, Bax, cleaved-caspase3, p53 and down-regulated of the expression of ki67, caspase-3, Bcl-2, GPX4 in tumor tissues of nude mice were observed by immunohistochemistry. TUNEL analysis showed that quisinostat could increase the apoptosis rate in the tumor tissues of nude mice. Up-regulation of the expression of p53 and down-regulated expression of GPX4 in cell lines were observed by immunofluorescent staining, and the expression locations of p53 and GPX4 proteins in TSCC cells were observed. Based on these findings, quisinostat may be a potential drug for the treatment of tongue squamous cell carcinoma.Many antineoplastic agents induce myelosuppression and leukopenia as secondary effects in patients. The development of anticancer agents that simultaneously provoke antitumor immune response represents an important therapeutic advance. The administration of 6-pentadecyl salicylic acid (6SA) contributes to the antitumor immunity using 4T1 breast cancer cells in Balb/c female mice, with Taxol as a positive control and in cotreatment with 6SA (6SA + Taxol; CoT). Our results show that 6SA reduces tumor volume and size by inducing caspase-8-mediated apoptosis without reducing tumor infiltrated lymphocytes. Also, 6SA reduced lung metastasis and increased the proportion of immune cells in blood, lymph nodes and bone marrow; more evidently, in the proportion of tumor-infiltrated natural killer (NK) cells and cytotoxic T lymphocytes. Taxol reduces helper and cytotoxic lymphocytes causing systemic immunosuppression and myelosuppression in bone marrow, whereas 6SA does not decrease any immune cell subpopulations in circulating blood and lymph nodes. More importantly, the CoT decreased the Taxol-induced cytotoxicity in circulating T cells and bone marrow. Treatment with 6SA increases the secretion of IL-2, IL-12, GM-CSF, TNF-α and IFN-γ and significantly reduces IL-10 and IL-17 secretion, suggesting that the reduction of regulatory T cells and tumor-associated macrophages contribute to the host control of tumor development. Finally, 6SA has an effective antineoplastic activity against breast cancer cells in an immunocompetent animal, reduces the myelosuppression and leukopenia that Taxol produces, improves the antitumoral immunological microenvironment and increases the overall survival of the animals improving the quality of life of patients with cancer.Semaphorin (Sema) 3A and Sema 4A are immunomodulatory molecules with a common receptor, neuropilin-1 (NRP-1), on the immune cells. Sema 3A binds to NRP-1 and inhibits T cell activation and inflammation, while Sema 4A binds to NRP-1 and promotes T cell activation and inflammation. These molecules are associated closely with the regulation of protein kinase B (AKT)/nuclear factor-kappaB (NF-κB) signaling, which are poorly understood in arsenic toxicity. The present study explored the role of Sema 3A or Sema 4A in arsenic-induced hepatotoxicity in mice. Arsenic exposure induced hepatic injury and resulted in the activations of p-AKT2, NF-κB p65, and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, downregulation of Sema 3A, and upregulation of Sema 4A or NRP-1. Interestingly, intervention with anti-Sema 4A antibody showed the mitigation of arsenic-induced hepatotoxicity, accompanied by the downregulation of Sema 4A, rebound of Sema 3A, and upregulation of NRP-1. And, the inflammatory signaling p-AKT2 or NF-κB p65, and NLRP3 inflammasome showed a downregulation compared with arsenic treatment group. In contrast, anti-Sema 3A antibody intervention did not show the significant effect in the histopathological features compared with arsenic treatment group. In conclusion, the anti-Sema 4A antibody antagonizes arsenic-induced hepatotoxicity in mice and may be involved in the inhibitions of AKT2/NF-κB and NLRP3 inflammatory signaling mediated synergistically by Sema 4A or Sema 3A and their receptor NRP-1.Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is the most common form of dominantly inherited ataxia worldwide. This disease is caused by an expanded CAG repeat in the coding region of ATXN3. Due to our incomplete understanding of mechanisms and molecular pathways related to this disease, there are no therapies that successfully treat core MJD patients. Therefore, the identification of new candidate targets related to this disease is needed. In this study, we performed a large-scale RNA interference (RNAi) screen of 387 transcription factor genes leading to the identification of several modifiers (suppressors and enhancers) of impaired motility phenotypes in a mutant ATXN3 transgenic C. elegans model. We showed that inactivation of one particular gene, fkh-2/FOXG1, enhanced the motility defect, neurodegeneration and reduced longevity in our MJD models. Opposite to genetic inactivation, the overexpression of fkh-2 rescued the impaired motility, shortened-lifespan, and neurodegeneration phenotypes of mutant ATXN3 transgenics. selleck compound We found that overexpression of FKH-2/FOXG1 in ATXN3 mutant worms is neuroprotective. Using our transgenic ATXN3 C. elegans models and the screening of an RNAi library, we gained insights into the pathways contributing to neurodegeneration, and found that FKH-2/FOXG1 has neuroprotective activity. These findings may aid the development of novel therapeutic interventions for MJD.