Oncolytic virotherapy Probably a new gamechanging tumor remedy
It is essential to clarify which chemical in plants can work as a defense signal or weapon in plant-pathogen-herbivore interactions. In spite of increased knowledge regarding signal transduction pathways regulating growth-defense balance, much more is needed to unveil the coordination of growth rate with metabolic modulations in bi-trophic interactions. Here, we addressed plant-pathogen-insect interaction for toxicity as well as dependnce along with plant defense dynamics against pathogens and insects with broad range effects at the physio-biochemical and molecular level. We have reviewed interfaces in plant-pathogen-insect research to show pulsating regulation of plant immunity for attuning survival and ecological equilibrium. learn more An improved understanding of the systematic foundation of growth-defense stability has vital repercussions for enhancing crop yield, including insights into uncoupling of host-parasite tradeoffs for ecological and environmental sustainability.Epithelial-mesenchymal transition (EMT), the epithelial cells transdifferentiation into the mesenchymal cells, has been involved in cancer metastasis. Nannocystin ax (NAN) is a cyclodepsipeptide initially isolated from Myxobacterial genus, Nannocystis sp. with anticancer activities. This study was designed to explore the effect of NAN on TGF-β1-induced EMT in lung cancer cells. The morphological alteration was observed with a microscope. Western blotting and immunofluorescence assays were used to detect the protein expression and the localization. The adhesion and migration were evaluated by adhesion assay and wound healing assay. The mRNA expression of TGF-β receptor type I (TβRI) was determined by real-time PCR. NAN significantly restrained TGF-β1-induced EMT morphological changes, the protein expression of E-cadherin, N-cadherin, and Vimentin, etc. TGF-β1 activated phosphorylation and nuclear translocation of Smad2/3 were inhibited by NAN. Furthermore, NAN suppressed adhesion and migration triggered by TGF-β1. In addition, NAN significantly down-regulated TβRI on the transcriptional level directly. In summary, these results showed that NAN restrained TGF-β1-induced epithelial-mesenchymal transition, migration, and adhesion in human lung cancer cells. The underlying mechanism involved the inhibition of Smad2/3 and the TβRI signaling pathway. This study reveals the new anticancer effect and mechanism of NAN.Decreased activity of AMP-activated protein kinase (AMPK) is implicated in the pathogenesis of diabetic cardiomyopathy (DCM). Recent evidence suggests a crosstalk between cinacalcet and AMPK activation. This study investigated the effects of cinacalcet on cardiac remodeling and dysfunction in type 2 diabetic rats (T2DM). High fat diet for 4 weeks combined with single intraperitoneal injection of streptozotocin (30 mg/kg) was used to induce type 2 diabetes in rats. Diabetic rats were either orally treated with vehicle, 5 or 10 mg/kg cinacalcet for 4 weeks. Control rats were fed standard chow diet and intraperitoneally injected with citrate buffer. T2DM rats showed lower body weight (BW), hyperglycemia and dyslipidemia, along with increased heart weight (HW) and HW/BW ratio. Masson's trichrome stained cardiac sections revealed massive fibrosis in T2DM rats. There were increased TGF-β1 and hydroxyproline levels, coupled with up-regulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in hearts of T2DM rats. These alterations were associated with redox imbalance and impaired cardiac functions. Decreased phosphorylation of AMPK at threonine172 residue was found in T2DM hearts. Cinacalcet for 4 weeks significantly activated AMPK and alleviated cardiac remodeling and dysfunction in a dose-dependent manner, without affecting blood glucose, serum calcium and phosphorus levels. Cinacalcet increased the mitochondrial DNA content, and expressions of PGC-1α, UCP-3, beclin-1 and LC3-II/LC3-I ratio. Cinacalcet decreased the pro-apoptotic Bax, while increased the anti-apoptotic Bcl-2 in cardiac tissue of T2DM rats. These findings might highlight cinacalcet as an alternative therapy to combat the development and progression of DCM.Glucocorticoids are the drugs most commonly used to manage inflammatory diseases. However, they are prone to inducing muscle atrophy by increasing muscle proteolysis and decreasing protein synthesis. Various studies have demonstrated that antioxidants can mitigate glucocorticoid-induced skeletal muscle atrophy. Here, we investigated the effect of a potent antioxidative natural flavonoid, morin, on the muscle atrophy and oxidative stress induced by dexamethasone (Dex) using mouse C2C12 skeletal myotubes. Dex (10 μM) enhanced the production of reactive oxygen species (ROS) in C2C12 myotubes via glucocorticoid receptor. Moreover, Dex administration reduced the diameter and expression levels of the myosin heavy chain protein in C2C12 myotubes, together with the upregulation of muscle atrophy-associated ubiquitin ligases, such as muscle atrophy F-box protein 1/atrogin-1, muscle ring finger protein-1, and casitas B-lineage lymphoma proto-oncogene-b. Dex also significantly decreased phosphorylated Foxo3a and increased total Foxo3a expression. Interestingly, Dex-induced ROS accumulation and Foxo3a expression were inhibited by morin (10 μM) pretreatment. Morin also prevented the Dex-induced reduction of myotube thickness, together with muscle protein degradation and suppression of the upregulation of atrophy-associated ubiquitin ligases. In conclusion, our results suggest that morin effectively prevents glucocorticoid-induced muscle atrophy by reducing oxidative stress.Vascular and mitochondrial dysfunction are well-established consequences of spinal cord injury (SCI). Evidence suggests mitigating these dysfunctions may be an effective approach in treating SCI. The goal of this study was to elucidate if mitochondrial biogenesis (MB) induction with a new, selective and FDA-approved 5-hydroxytryptamine receptor 1F (5-HT1F) receptor agonist, lasmiditan, can stimulate locomotor recovery and restoration of the blood-spinal cord barrier (BSCB) after SCI. Female C57BL/6 J mice were subjected to moderate SCI using a force-controlled impactor-induced contusion model followed by daily administration of lasmiditan (0.1 mg/kg, i.p.) beginning 1 h after injury. In the naïve spinal cord, electron microscopy revealed increased mitochondrial density and mitochondrial area, as well as enhanced mitochondrial DNA content. FCCP-uncoupled oxygen consumption rate (OCR), a functional marker of MB, was also increased in the naïve spinal cord following lasmiditan treatment. We observed disrupted mitochondrial DNA content, PGC-1α levels and FCCP-OCR in the injury site 3d after SCI.