PostCOVID19 treatment an exclusive take a look at persistent kidney illness sufferers

From World News
Jump to navigation Jump to search

This paper designs a bluetooth-based low-power multi-parameter monitoring system. The system is mainly composed of ECG signal acquisition, respiratory signal acquisition, body temperature acquisition, bluetooth 4.0 transmission module and Android mobile phone APP display. The system collects the corresponding physiological signals through various collection parts, and can realize the monitoring of three physiological signals of electrocardiogram, respiration and body temperature. The Android mobile APP can display ECG, respiratory waveform and temperature data in real time. The system is small in size and low in power consumption, and has a good application prospect in portable and wearable medical applications.
In order to solve alarm fatigue, the algorithm optimization strategies were researched to reduce false and worthless alarms.
A four-lead arrhythmia analysis algorithm, a multiparameter fusion analysis algorithm, an intelligent threshold reminder, a refractory period delay technique were proposed and tested with collected 28 679 alarms in multi-center study.
The sampling survey indicate that the 80.8% of arrhythmia false alarms were reduced by the four-lead analysis, the 55.9% of arrhythmia and pulse false alarms were reduced by the multi-parameter fusion analysis, the 28.0% and 29.8% of clinical worthless alarms were reduced by the intelligent threshold and refractory period delay techniques respectively. Finally, the total quantity of alarms decreased to 12 724.
To increase the dimensionality of parametric analysis and control the alarm limits and delay time are conducive to reduce alarm fatigue in intensive care units.
To increase the dimensionality of parametric analysis and control the alarm limits and delay time are conducive to reduce alarm fatigue in intensive care units.Compared with conventional high energy X-ray radiotherapy, proton/carbon ion has obvious advantages because of its Bragg peak dose distribution. However, proton heavy ion facility has complex structure, high energy and various radiation types due to various nuclear reaction processes, the radiation protection safety brought by the operation of facilities has gradually attracted attention. Taking the proton/carbon ion radiotherapy facility of Shanghai Proton and Heavy Ion Center as an example, the author mainly analyzed the operation principle of proton/carbon ion treatment facility, the basis of radiation protection, analysis of key radiation source points, etc., so as to provide theoretical support and experience for radiation protection.A clinical information navigation system based on 3D human body model is designed. The system extracts the key information of diagnosis and treatment of patients by searching the historical medical records, and stores the focus information in a predefined structured patient instance. In addition, the rule mapping is established between the patient instance and the three-dimensional human body model, the focus information is visualized on the three-dimensional human body model, and the trend curve can be drawn according to the change of the focus, meanwhile, the key diagnosis and treatment information and the original report reference function are provided. The system can support the analysis, storage and visualization of various types of reports, improve the efficiency of doctors' retrieval of patient information, and reduce the treatment time.Soil salinization induced by the dual effects of natural environment and human activities is a serious ecological problem globally. Salinization caused osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, leading to retard, reduce biomass and even total crop failure. Arbuscular mycorrhizal fungi (AMF) is a group of beneficial microorganism with wide distribution. AMF can form symbiotic relationship with most plant roots, with ecological significance in various stressed ecosystems. selleck chemicals llc Because of the highly effective antioxidative system in symbionts, AMF could improve plant anti-oxidative response under salt stress and enhance their tolerance to salt stress. Here, we reviewed the research progress of arbuscular mycorrhizal symbiosis in improing plant antioxidative mechanism, including oxidative damage, osmotic regulation, antio-xidant mechanism and bioactive molecules. Finally, research prospects were proposed to provide theoritical support for improving plant salt tolerance by mycorrhizal biotechnology.Landscape structure and spatial pattern are the core issues in landscape ecology. The application of graph theory provides a research framework for landscape pattern analysis. Landscape graph based on graph theory is gradually applied to the connectivity modeling of biodiversity conservation and decision support of landscape planning. The representation, analysis and application of landscape graph have become a hot topic in conservation biology and landscape ecology. In this review, we first introduced the graph theory basis of landscape map. Based on the Scopus database, 257 published journal papers with the words "landscape graph", "connectivity" and "network" in titles, abstracts, and keywords from 1993 to 2019 were retrieved. We analyzed the research progress and development trend of this field from the aspects of annual published papers, journal sources, research areas, research institutions and landscape types involved. The results showed that before 2017, the number of journal papers published showed atat conservation. The impact of graph theory on conservation science and planning comes from the rich theoretical basis and mature research methods. Landscape graph based on graph theory provides a springboard for ecological understanding of landscape structure and pattern, and is an important tool for global researchers and practitioners.Carbon and nitrogen stable isotopic technique has been widely used in research of glassland ecosystems. Here, we summarized studies using carbon and nitrogen stable isotopes in the alpine meadow ecosystem on the Qinghai-Tibet Plateau. Firstly, we reviewed the environmental factors which influenced carbon and nitrogen isotope composition (δ13C and δ15N) of plants and soils in alpine meadow, such as altitude, moisture, fertilization, grassland degradation, and temperature. The values of plant δ13C were positively correlated with altitude, and negatively correlated with atmospheric pressure, grassland degradation and temperature. The relationship between plant δ13C and precipitation was non-linear. The values of soil δ13C were positively correlated with altitude and grassland degradation. The values of plant δ15N were positively correlated with soil moisture and fertilization, and negatively correlated with grassland degradation. Secondly, we reviewed the current application and progresses of 13C and 15N in the identification of plant photosynthetic type, water use, nutrient transport along food chain and carbon and nitrogen cycle in the alpine meadow.