Realtime Renovation of an Animating Body system from one Level Camera

From World News
Jump to navigation Jump to search

Calcium deposition within the atherosclerotic plaques is the precursor of cardiovascular complications. Therefore, determination of levels of minerals and trace elements in blood plays an important role in assigning the stage of atherosclerosis. In this study, determination of mineral and trace element levels in atherosclerotic patients is aimed. Mineral and trace element levels within serum samples of 12 atherosclerotic patients were evaluated by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and phosphorous (P), iron (Fe), magnesium (Mg) and calcium (Ca) levels were examined. Human carotid atherosclerotic plaque samples were previously screened by Scanning Acoustic Microscopy (SAM) and sound speed maps of the plaques showed higher sound speed values in the calcified regions, when compared to collagen-rich regions, indicating accumulation of calcium. Element analysis also showed increased Ca levels within serum samples. Therefore, it can be concluded that Ca deposition can be examined by ICP-OES and SAM, indicating that these techniques are confirmatory and may be combined to characterize atherosclerosis in the future.Ionization chamber dosimetry is predominantly used for determination of the absorbed dose to water in 60Co and high-energy radiotherapy photon beams. The most widespread ionization chambers employed for absolute or reference dose determinations in reference conditions are the Farmer-type cylindrical ionization chambers. The Farmer-type ionization chambers have a variety of constructions and materials and their responses vary in the radiation beam. Clinical accelerators, in addition to conventional photon beams with flattening-filter, can also deliver flattening-filter-free (FFF) photon beams. The responses of five different Farmer-type cylindrical ionization chambers were experimentally examined with reference to absorbed dose determination in reference conditions when using the International Atomic Energy Agency (IAEA) - American Association of Physicists in Medicine (AAPM) Technical Reports Series no. 483 (TRS-483) and the IAEA TRS-398 dosimetry protocol in the present investigation. The irradiations were p obtained using these two chambers show that, in the photon beams examined, the employed correction for the central electrode (p cel ) regarding these two chambers is associated with an inaccuracy which is larger than the calculated uncertainty for this correction. The outcomes found in the present experimental investigation using the various ionization chambers also indicate possible inaccuracy in the employed beam quality correction factors (k Q ) and imply the need for a revision of these factors.Although the luminescence of water at lower energy than the Cerenkov-light threshold during carbon-ion irradiation was found and imaging was possible, the temporal response has not been measured, and so the difference from Cerenkov-light remains unclear. To clarify this point, we measured the temporal response of the luminescence of water at lower energy than the Cerenkov-light threshold and compared it with that of Cerenkov-light. We used silicon photomultiplier (Si-PM) modules to measure the temporal response at the Bragg peak area of a water phantom during irradiation of the carbon ion where the Cerenkov-light was not included. We also measured the temporal response at the shallow depth of the water phantom where the Cerenkov-light was included. In both areas, we measured the temporal waveforms of the light produced by the irradiation of the carbon ions in which the ripples of spills were clearly observed. We found no difference in the waveforms between the Bragg peak and the shallow depths of water. Our results do not contradict the hypothesis that the luminescence of water and Cerenkov-light are produced by the same mechanism.In small animal positron emission tomography (PET) studies, given the spatial resolution of preclinical PET scanners, quantification in small regions can be challenging. Moreover, in scans where animals are placed away from the center of the field of view (CFOV), e.g. SCH900353 research buy in simultaneous scans of multiple animals, quantification accuracy can be compromised due to the loss of spatial resolution towards the edge of the FOV. Here, we implemented a spatially variant resolution model to improve quantification in small regions and to allow simultaneous scanning of multiple animals without compromising quantification accuracy. The scanner's point spread function (PSF) was characterized across the FOV and modelled using a spatially variant and asymmetric Gaussian function. The spatially variant PSF (SVPSF) was then used for resolution modelling in the iterative reconstruction. To assess the image quality, a line source phantom in a cold and warm background, as well as mouse brain [18F]FDG scans, were performed. The SVPSF and the vendor's maximum a posteriori (MAP3D) reconstructions produced uniform spatial resolution across the scanner FOV, but MAP3D resulted in lower spatial resolution. The line sources recovery coefficient using SVPSF was similar at the CFOV and at the edge of the FOV. In contrast, the other tested reconstructions produced lower recovery coefficient at the edge of the FOV. In mouse brain reconstructions, less spill-over from hot regions to cold regions, as well as more symmetric regional brain uptake was observed using SVPSF. The contrast in brain images was the highest using SVPSF, in mice scanned at the CFOV and off-center. Incorporation of a spatially variant resolution model for small animal brain PET improves quantification accuracy in small regions and produces consistent image spatial resolution across the FOV. Therefore, simultaneous scanning of multiple animals can benefit by using spatially variant resolution modelling.Spinal instrumentations have been classified as rigid fixation, total disc replacement and dynamic stabilization system for treatment of various spinal disorders. The efficacy and biomechanical suitability of any spinal implant can be measured through in vitro, in vivo experiments and numerical techniques. With the advancement in technology finite element models are making an important contribution to understand the complex structure of spinal components along with allied functionality, designing and application of spinal instrumentations at preliminary design stage. This paper aimed to review the past and recent studies to describe the biomechanical aspects of various spinal implants. The literatures were grouped and reviewed in accordance to instrumentation category and their functionality in the spinal column at respective locations.