Riluzoleinduced interstitial pneumonia in the circumstance using amyotrophic side to side sclerosis
The 226Ra concentration and some physicochemical parameters have been measured in thermal spring waters used for medical therapy and drinking purposes in the Astara basin of North Guilan, Iran. The radon emanation method was performed using the AB-5 photomultiplier tube to measure the 226Ra concentration in water samples. Also, the physicochemical parameters of the water were measured in situ using a portable multimeter-VWR multi. The average concentrations of 226Ra were ranged between 3.4 ± 0.06 to 38.2 ± 0.08 mBq l-1. For all samples, the 226Ra concentration values range is lower than the maximum admissible value recommended by the WHO report. The relation between the physicochemical parameters and 226Ra activity concentration of groundwater was assessed. The results indicate a significant correlation coefficient between 226Ra concentration and T, as well as acidity pH. Anomalously high 226Ra concentrations in groundwater are preferentially found in high temperate and electric conductivity along with the acidic environment.The environmental behaviors of graphitic carbon nitride (g-C3N4) have drawn increasing attention in recent. Understanding the fate and transport of g-C3N4 in porous media is necessary for evaluating its environmental risks. Column experiments were used in this study to investigate the combined effect of ionic strength (IS) and other common physicochemical factors (i.e. sand grain size, solution pH, and humic acid concentration) on g-C3N4 transport. The one-site kinetic models were applied to simulate the retention and transport of g-C3N4 in porous media, which fitted the breakthrough curves very well. Experimental and model results showed that g-C3N4 had a weak mobility with the transport mass recovery (TMR) less than 39.6% at pH 6.0 in absence of humic acid (HA). The mobility of g-C3N4 was inhibited with decreasing sand grain size, and the inhibited efficiency was enhanced with IS. However, g-C3N4 transport was significantly enhanced with increasing pH and HA concentration, and the enhanced efficiency was more obviously at high IS. The maximum TMR (78.3%) of g-C3N4 was observed with the presence of 5 mg L-1 HA. These results indicated that physicochemical factors played an important and combined role in controlling g-C3N4 transport in porous media, which would lead to the more complex evaluation on the environmental behaviors of g-C3N4.Benzalkonium chloride (BKC) is a commonly used preservative in personal care products and pharmaceutical preparations. However, its ecological risks are not well understood because of lack of monitoring data and ecotoxicological information. In the present study, occurrence of BKC was investigated in the waters near a pharmaceutical manufacturing complex of South Korea and its acute and chronic ecotoxicities were evaluated using Daphnia magna and Japanese medaka (Oryzias latipes). Associated ecological risks were estimated by calculating hazard quotients (HQs). In addition, endocrine disruption potency of BKC was compared with those of other frequently used preservatives using human adrenal (H295R) and rat pituitary (GH3) cells. High concentration of BKC was detected at locations near the pharmaceutical manufacturing plants, i.e., 35.8 μg/L for dodecyl benzyl dimethyl ammonium chloride (BKC-C12), and 21.6 μg/L tetradecyl benzyl dimethyl ammonium chloride (BKC-C14). In Daphnia, 48 h immobilization EC50 and 21 d reproduction NOEC were determined at 41.1 μg/L and ≥10.8 μg/L, respectively. For O. latipes, 96 h LC50 was determined at 246 μg/L while the growth inhibition NOEC was ≥113.4 μg/L following early life stage exposure. BKC significantly up-regulated vitellogenin gene of juvenile fish, indicating its endocrine disrupting potential in fish. Exposure to BKC increased steroid hormone level in H295R cells, and induced cytotoxicity in GH3 cells. HQ values of BKC were determined at greater than one in the ambient water near pharmaceutical manufacturing facilities. read more Considering high ecological risk and endocrine disrupting potential, long-term consequences of BKC contamination in aquatic ecosystem need to be examined.The appearance of an increased amount of organophosphate flame retardant (OPFRs) in natural water is related the treated effluents from wastewater treatment plants (WWTPs) and thus understanding the OPFRs concentration and reduction variation in WWTPs would provide valuable insight into OPFR management and reduction. In this study, we have analyzed OPFRs (10 kinds tris(chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP), tris(1,3-dichloropropyl) phosphate (TDCP), tris(phenyl) phosphate (TPhP), tris(2-ethylhexyl) phosphate (TEHP), diphenylcresylphosphate (DCP), tris(methylphenyl) phosphate (TCP), tris(2-butoxyethyl) phosphate (TBEP), 2-ethylhexyl diphenyl phosphate (EHDP), and tris(butyl) phosphate (TBP)) in both water and sludge samples collected from different phases of a WWTP upgrading. The results show that TCPP and TCEP were mainly present in the aqueous phase, whereas TEHP dominated in the solid phase. The overall OPFR reduction efficiencies were above 40% through whole treatment processes by all the phases. More OPFRs reduction efficiency in primary sedimentation tanks was higher mainly because of bigger tank volume. The anaerobic zone in all cases could decrease OPFRs by over 13%. The removal of OPFRs in the oxic zone highly varied under the influence of the aeration pipe, water temperature, and aeration amount. Compared with chlorinated OPFRs, aryl and alkyl OPFRs were easier to reduce and less affected by the upgrading. Because OPFRs have been widely used in plastic materials such as pipes, WWTP upgrading - which usually requires more aeration and addition of reagents and instruments and the aim of which is normally to reduce more COD, N and P -- has introduced more OPFRs into the water within the WWTP.The evolution of social cognition throughout the course of schizophrenia is unclear not being possible to state whether it remains stable from early stages to chronicity, or it changes as the disease develops. For this purpose, 90 patients with schizophrenia and 139 healthy controls have been compared establishing 4 different groups paired by age and gender first episode of psychosis patients (FEP), young healthy controls (YHC), chronic patients with schizophrenia (CS) and adult healthy controls (AHC). Performance in Theory of Mind (ToM) has been assessed using The Hinting Task and The Reading the Mind in the Eyes Test (RMET). In the Hinting Task, when comparing patients with their respective control group, differences found between CS patients and their corresponding controls (p less then .001) are much bigger (almost twice) than differences between FEP patients and young controls (p = .001). In fact, young and adult healthy controls did not significantly differ in their scores, while the CS group showed significant worse performance than the FEP group.