Spacious Nose General Venous Malformation

From World News
Jump to navigation Jump to search

Staphylococcal cassette chromosome mec (SCCmec) represents a sequence of clear clinical and diagnostic importance in staphylococci. At a minimum the chromosomal cassette contains the mecA gene encoding PBP2a but frequently also includes additional antibiotic resistance genes (e.g., ermA and aadC; macrolide and aminoglycoside resistance, respectively). Certain regions within SCCmec elements are hot spots for sequence instability due to cassette-specific recombinases and a variety of internal mobile elements. SCCmec changes may affect not only cassette stability but the integrity of adjacent chromosomal sequences (e.g., the staphylococcal protein A gene; spa). We investigated SCCmec stability in methicillin-resistant Staphylococcus aureus (MRSA) strains carrying one of four SCCmec types cultured in the absence of antimicrobial selection over a 3-month period. SCCmec rearrangements were first detected in cefoxitin-susceptible variants after 2 months of passage, and most commonly showed precise excision of the SCCmec element. Sequence analysis after 3 months revealed both precise SCCmec excision and a variety of SCCmec internal deletions, some including extensive adjacent chromosomal loss, including spa. No empty cassettes (i.e., loss of just mecA from SCCmec) were observed among the variants. SCCmec stability was influenced both by internal mobile elements (IS431) as well as the host cell environment. Genotypically similar clinical isolates with deletions in the spa gene were also included for purposes of comparison. The results indicate a role for host-cell influence and the IS431 element on SCCmec stability.In this study, we explored clofazimine (CFZ) as a potential substrate of uptake and efflux transporters that might be involved in CFZ disposition, using transporter gene overexpressing cell lines in vitro. The intracellular concentrations of CFZ were significantly increased in the presence of selective inhibitors of P-gp and BCRP, which include verapamil, cyclosporine-A, PSC-833, quinidine, Ko143, and daunorubicin. In a bidirectional transport assay using transwell cultures of cell lines overexpressing P-gp and BCRP, the mean efflux ratios of CFZ were found to be 4.17 ± 0.63 and 3.37 ± 1.2, respectively. The Km and maximum rate of uptake (Vmax) were estimated to be 223.3 ± 14.73 μM and 548.8 ± 87.15 pmol/min/mg protein for P-gp and 381.9 ± 25.07 μM and 5.8 ± 1.22 pmol/min/mg protein for BCRP, respectively. Among the uptake transporters screened, the CFZ uptake rate was increased 1.93 and 3.09-fold in HEK293 cell lines overexpressing OAT1 and OAT3, respectively, compared to the control cell lines, but no significant uptake was observed in cell lines overexpressing OCT1, OCT2, OATP1B1, OATP1B3, OATP2B1, or NTCP. Both OAT1- and OAT3-mediated uptake was inhibited by the selective inhibitors diclofenac, probenecid, and butanesulfonic acid. The Km and Vmax values of CFZ were estimated to be 0.63 ± 0.15 μM and 8.23 ± 1.03 pmol/min/mg protein, respectively, for OAT1 and 0.47 ± 0.1 μM and 17.81 ± 2.19 pmol/min/mg protein, respectively, for OAT3. These findings suggest that CFZ is a novel substrate of BCRP, OAT1, and OAT3 and a known substrate of P-gp in vitro.Most plant viruses require insect vectors for transmission. One of the key steps for the transmission of persistent-circulative plant viruses is overcoming the gut barrier to enter epithelial cells. To date, little has been known about viral cofactors in gut epithelial cells of insect vectors. Here, we identified flotillin 2 as a plasma membrane protein that facilitates the infection of rice stripe virus (RSV) in its vector, the small brown planthopper. Flotillin 2 displayed a prominent plasma membrane location in midgut epithelial cells. The nucleocapsid protein of RSV and flotillin 2 colocalized on gut microvilli, and a nanomolar affinity existed between the two proteins. Knockout of flotillin 2 impeded the entry of virions into epithelial cells, resulting in a 57% reduction of RSV levels in planthoppers. The knockout of flotillin 2 decreased disease incidence in rice plants fed by viruliferous planthoppers from 40% to 11.7%. Furthermore, flotillin 2 mediated the infection of southern rice black-streaked dwdisease and perhaps that of other rice virus diseases in the future.We report the insertion of Pd(II) into an originally achiral rotaxane producing two chiral metallorotaxanes one is planar-chiral, with its two interlocked components both chelating nonequivalently to the metal center; the other is C2-symmetrical-chiral, with the dynamically exchangeable stereogenic units stabilized by the interlocked structure. Chiral additives confirmed the existence of chirality, with the enantiomers of the C2-symmetrical N-heterocyclic carbene complex being resolved using chiral TRISPHAT counteranions.Artificial protein cages have great potential in a number of areas including cargo capture and delivery and as artificial vaccines. Here, we investigate an artificial protein cage whose assembly is triggered by gold nanoparticles. Using biochemical and biophysical methods we were able to determine both the mechanical properties and the gross compositional features of the cage which, combined with mathematical models and biophysical data, allowed the structure of the cage to be predicted. The accuracy of the overall geometrical prediction was confirmed by the cryo-EM structure determined to sub-5 Å resolution. This showed the cage to be nonregular but similar to a dodecahedron, being constructed from 12 11-membered rings. Surprisingly, the structure revealed that the cage also contained a single, small gold nanoparticle at each 3-fold axis meaning that each cage acts as a synthetic framework for regular arrangement of 20 gold nanoparticles in a three-dimensional lattice.High reactivity of trimethoxyphenyl (TMP)-iodonium(III) acetate for phenol O-arylation was achieved. It was first determined that the TMP ligand and acetate anion cooperatively enhance the electrophilic reactivity toward phenol oxygen atoms. The proposed method provides access to various diaryl ethers in significantly higher yields than the previously reported techniques. Various functional groups, including aliphatic alcohol, boronic ester, and sterically hindered groups, were tolerated during O-arylation, verifying the applicability of this ligand- and counterion-assisted strategy.NH-1,2,3-Triazoles undergo a ring cleavage in reactions with fluorinated acid anhydrides (trifluoroacetic, difluoroacetic, chlorodifluoroacetic, and pentafluoropropionic anhydrides) by nitrogen acylation and acid-mediated triazole ring opening. Structurally diverse fluoroalkylated oxazoles were prepared from 4,5-disubstituted-1,2,3-triazoles. Efficient synthesis of 2-acylaminoketones was achieved from 4-substituted 1,2,3-triazoles. Finally, easy access to fluoroalkylated imidazoles and 1,2,4-triazines was developed by a one-pot two-step route from NH-triazoles, fluorinated anhydrides, and amines or hydrazine.Herein, we report a radical strategy for diastereoselective construction of β-substituted cyclopentanols and cyclobutanols. The success of the reaction is attributed to the favorable radical 1,2-silyl transfer over the cyclization of alkoxy radicals to the olefins. The reaction shows broad substrate scope and wide functional-group tolerance. The synthetic potential of the methodology was demonstrated in the gram scale reaction and facile synthesis of various spiro compounds.Herein, we report the development of the photocatalytic C-H functionalization of methane, ethane, and heavier gaseous alkanes with good yields and selectivity, broad scope (57 examples), mild conditions, and low cost. Kinetics and density functional theory calculations were investigated for the key photoinduced ligand-to-metal charge transfer and hydrogen atom transfer processes to reveal the detailed mechanism of iron photocatalysis. This work may bring novel ideas for feedstock upgrading and catalyst design.Cesium lead iodide (CsPbI3) is a promising semiconductor with a suitable band gap for optoelectronic devices. CsPbI3 has a metastable perovskite phase that undergoes a phase transition into an unfavorable nonperovskite phase in an ambient environment. This phase transition changes the optoelectronic properties of CsPbI3 and hinders its potential for device applications. Therefore, it is of central importance to understand the kinetics of such instability and develop strategies to control and stabilize the perovskite phase. Here, we use ultralong CsPbI3 nanowires as a model platform to investigate the phase transition kinetics. Our results depict the role of environmental stressors (moisture and temperature) in controlling the phase transition dynamics of CsPbI3, which can serve as guiding principles for future phase transition studies and the design of related photovoltaics. Furthermore, we demonstrate the controllability of phase propagation on individual nanowires by varying the moisture level and temperature.The single-molecule magnet Mn84 is a challenge to theory because of its high nuclearity. learn more We directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.Multifunctional electronic devices that combine logic operation and data storage functions are of great importance in developing next-generation computation. The recent development of van der Waals (vdW) heterostructures based on various two-dimensional (2D) materials have brought exceptional opportunities in designing novel electronic devices. Although various 2D-heterostructure-based electronic devices have been reported, multifunctional devices that can combine logic operations and data storage functions are still quite rare. In this work, we design and fabricate a half-floating-gate field-effect transistor based on MoS2-BN-graphene vdW heterostuctures, which can be used for logic operations as a MOSFET, nonvolatile memory as a floating-gate MOSFET (FG-MOSFET), and rectification as a diode. These results could lay the foundation for various applications based on 2D vdW heterostuctures and inspire the design of next-generation computation beyond the von Neumann architecture.Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by designing biomimetic carbon nanotube (CNT) yarns. The hydrophilic CNT (HCNT) coiled yarn was prepared by storing pre-twist into CNT sheets and subsequent electrochemical oxidation (ECO) treatment. The resulting yarn demonstrated structural stability even when one end was cut off without the possible loss of pre-stored twists. The HCNT coiled yarn actuators provided maximal contractile work of 863 J/kg at 11.8 MPa stress when driven by water. Moreover, the recovery time of electrically heated yarns at a direct current voltage of 5 V was 95% shorter than that of neat yarns without electric heating. Finally, the electrothermally recoverable hydro-actuators showed a high actuation frequency (0.17 Hz) and full-time power density (143.