Spatial microvariation regarding 3D hydrogel stiffness regulates your alignment attributes associated with hMSCs
Furthermore, GA decreased the endogenous NO levels and the activity of antioxidant enzymes, while application of a NO scavenger-cPTIO diminished the alleviatory role of GA. In summary, the GA accelerated cell wall Cd exclusion mechanism probably improved rice tolerance to Cd toxicity via regulating the accumulation of NO.A novel co-graft tannin and polyethyleneimine co-coating magnetic composite (TP@Fe3O4) was prepared in the study. On this premise, an unique stepwise efficient strategy based on magnetic flocculation and Sulfate radical (SO4•-)-advanced oxidation processes (S-AOPs) for eliminating Microcystis aeruginosa (M. aeruginosa) and algal organic matters (AOMs) was presented. Due to the high positive charge of TP@Fe3O4, a > 99 % high algae removal rate was obtained at a modest TP@Fe3O4 dosage of 100 mg/L at pH = 8.0 with a short separation time of 5 min. Further, peroxymonosulfate (PMS) treatment was employed as a pre-oxidation method to lower cell stability and promote M. aeruginosa removal by subsequent TP@Fe3O4 flocculation. The PMS/TP@Fe3O4 system successfully cuts the optimum dose of TP@Fe3O4 in half (50 mg/L) without causing obvious cell damage. Following algal fast magnetic separation, ultraviolet (UV) was introduced to activate PMS to totally degrade AOM and microcystin. Response surface methodology (RSM) demonstrated that UV/PMS oxidation removed > 80 % of DOC and > 94 % of microcystin under optimal conditions. SO4•- was the main radical species that aided in the elimination of AOM. This is the first study to use magnetic flocculation in conjunction with AOPs to mitigate harmful algal blooms, which can enable the non-destructive eradication of M. aeruginosa while also efficiently degrading AOMs.Bisphenols have extensively been found in various environmental matrices and caused public concerns due to their endocrine-disrupting potential. Herein, we developed a ZIF-67@ZIF-8-derived CoZn/nitrogen-doped carbon (CoZn/NC) as a robust adsorbent for bisphenols in wastewaters. The self-generating carbon nanotubes and the open metal sites provided sufficient adsorption sites. The Co component endowed the derivative with strong magnetism facilitating its separation from water. CoZn/NC exhibited exceeding water stability in pH 3 - 12 solution and withstood water up to 15 days. The great applicability of CoZn/NC was validated with 16 real wastewaters from different sources (recoveries exceeding 97.9%). Fast adsorption kinetics were observed with removal efficiencies above 96.5% within 1 min. The adsorption isotherms were well fitted with the Langmuir model, with adsorption capacities of 222, 200, 193, and 321 mg g-1 for bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, respectively. Variations in external conditions, including pH 3 - 9, humic acid (50 mg L-1), and NaCl (0.1 mol L-1), had negligible impacts on the adsorption process. The characterizations and density functional theory computation demonstrated that electrostatic, hydrophobic, π - π, and cation- π interactions are the driving forces in this system. The as-prepared CoZn/NC exhibits great promise in real wastewater treatment.Arbuscular mycorrhizal fungi (AMF) exhibit great potential in heavy-metal immobilization in semi-aquatic habitats. Under high heavy-metal stress, however, the role of AMF is limited, and the detoxification mechanism of AMF in heavy metals' stabilization remains unclear. This study investigated the effects of AMF on a wetland plant (Iris pseudacorus) and chromium (Cr) immobilization at different water depths in semi-aquatic habitats with biochar addition. Results showed that AMF increased the physiological and photosynthetic functions in I. pseudacorus under Cr exposures. Besides, AMF alleviated the accumulation of reactive oxygen species and lipid peroxidation by enhancing the antioxidant enzyme activities. AMF and biochar significantly decreased Cr concentrations in outlet water and increased Cr accumulation in I. pseudacorus. Besides, biochar also vastly improved Cr accumulation in the substrate under the fluctuating water depth. AMF reduced Cr bioavailability in the substrate, with Cr (Ⅵ) concentrations and acid-soluble forms of Cr decreased by 0.3-64.5% and 19.0-40.8%, respectively. Micro-proton-induced X-ray emission was used to determine element localization and revealed that AMF improved the nutrients uptake by wetland plants and inhibited Cr translocation from roots to shoots. Overall, this study demonstrated that the interaction between AMF and biochar could significantly enhance the immobilization of high Cr concentrations in semi-aquatic habitats.Removal and recovery of uranium from uranium-mine wastewater is beneficial to environmental protection and resource preservation. Reduction of soluble hexavalent U (U(VI)) to insoluble tetravalent uranium (U(IV)) by microbes is a plausible approach for this purpose, but its practical implementation has long been restricted by its intrinsic drawbacks. The electro-stimulated microbial process offers promise in overcoming these drawbacks. However, its applicability in real wastewater has not been evaluated yet, and its U(VI) removal mechanisms remain poorly understood. Herein, we report that introducing a weak electro-stimulation considerably boosted microbial U(VI) removal activities in both synthetic and real wastewater. The U(VI) removal has proceeded via U(VI)-to-U(IV) reduction in the biocathode, and the electrochemical characterization demonstrates the crucial role of the electroactive biofilm. Microbial community analysis shows that the broad biodiversity of the cathode biofilm is capable of U(VI) reduction, and the molecular ecological network indicates that synthetic metabolisms among electroactive and metal-reducing bacteria play major roles in electro-microbial-mediated uranium removal. Metagenomic sequencing elucidates that the electro-stimulated U(VI) bioreduction may proceed via e-pili, extracellular electron shuttles, periplasmic and outer membrane cytochrome, and thioredoxin pathways. These findings reveal the potential and mechanism of the electro-stimulated U(VI) bioreduction system for the treatment of U-bearing wastewater.Water managements are the most effective agricultural practices for restraining cadmium (Cd) uptake and translocation in rice, which closely correlated with rhizosphere assembly of beneficial microbiome. However, the role of the assemblage of specific microbiota in controlling root-to-shoot Cd translocation in rice remains scarcely clear. The aim of this study was to ascertain how water managements shaped rhizosphere microbiome and mediated root-to-shoot Cd translocation. To disentangle the acting mechanisms of water managements, we performed an experiment monitoring Cd uptake and transport in rice and changes in soil microbial communities in response to continuously flooding and moistening irrigation. Continuously flooding changed rhizosphere microbial communities, leading to the increased abundance of anaerobic bacteria such as Clostridium populations. Weighted gene co-expression network analysis (WGCNA) showed that a dominant OTU163, corresponding to Clostridium sp. CSP1, exhibited a strong negative correlation with root-to-shoot Cd translocation. An integrated analysis of transcriptome and metabolome further indicated that the Clostridium-secreted butyric acid was involved in the regulation of phenylpropanoid pathway in rice roots. The formation of endodermal suberized barriers and lignified xylems was remarkably enhanced in the Clostridium-treated roots, which led to more Cd retained in root cell wall and less Cd in the xylem sap. Collectively, our results indicate that the development of root apoplastic barriers can be orchestrated by beneficial Clostridium strains that are assembled by host plants grown under flooding regime, thereby inhibiting root-to-shoot Cd translocation.V-Cr-bearing reducing slag (VCRS) is considered a hazardous waste that can create ecosystem disasters if handled improperly. It consists of a considerable amount of heavy metals, such as vanadium (V) and chromium (Cr). In this study, we propose a novel process featuring a VCRS self-induced Cr(III)-Fenton-like reaction to efficiently recover V and Cr from hazardous VCRS. The generation of hydroxyl radicals (·OH) and determination of their effect on V and Cr oxidation were examined via electron spin resonance detection, free radical quenching, and terephthalic acid fluorescence probe methods. Protosappanin B ic50 The V and Cr oxidative leaching processes were directly controlled by the amount of added H2O2 and generated·OH from the Cr(III)-Fenton-like reaction, which in turn was dependent on the amount of dissolved Cr(OH)4-. In a single oxidative leaching process, the leaching efficiencies of V and Cr reached 97.5 ± 0.6 % and 85.2 ± 0.8 %, respectively, and reached 99.4 ± 0.5 % and 94.6 ± 0.9 %, respectively, from circular leaching owing to a continuous supply of dissolved Cr(OH)4- from fresh VCRS. This study identifies a novel approach to discovering deep oxidation of the VCRS while minimizing environmental contamination via a waste control strategy and can be considered an attractive alternative approach for the green treatment of VCRS.
An increase in extreme heat events has been reported along with global warming. Heat exposure in ambient temperature is associated with all-cause diabetes mortality and all-cause hospitalization in diabetic patients. However, the association between heat exposure and hospitalization for hyperglycemic emergencies, such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and hypoglycemia is unclear. The objective of our study is to clarify the impact of heat exposure on the hospitalization for DKA, HHS, and hypoglycemia.
Data of daily hospitalizations for hyperglycemic emergencies (i.e., DKA or HHS) and hypoglycemia was extracted from a nationwide administrative database in Japan and linked with temperature in each prefecture in Japan during 2012-2019. We applied distributed lag non-linear model to evaluate the non-linear and lagged effects of heat exposure on hospitalization for hyperglycemic emergencies.
The pooled relative risk for hyperglycemic emergencies of heat effect (the 90th percentile of temperature with reference to the 75th percentile of temperature) and extreme heat effect (the 99th percentile of temperature with reference to the 75th percentile of temperature) over 0-3 lag days was 1.27 (95%CI 1.16-1.39) and 1.64 (95%CI 1.38-1.93), respectively. The pooled relative risk for heat effect on hospitalization for hypoglycemia and extreme heat effect over 0-3 lag days was 1.33 (95%CI 1.17-1.52) and 1.65 (95%CI 1.29-2.10), respectively. These associations were consistent by type of hyperglycemic emergencies and type of diabetes and were generally consistent by regions.
Heat exposure was associated with hospitalizations for DKA, HHS and hypoglycemia. These results may be useful to guide preventive actions for the risk of fatal hyperglycemic emergencies and hypoglycemia.
Heat exposure was associated with hospitalizations for DKA, HHS and hypoglycemia. These results may be useful to guide preventive actions for the risk of fatal hyperglycemic emergencies and hypoglycemia.