Summary and also Review regarding Studies on Heart Getting older inside Nonhuman Primates

From World News
Jump to navigation Jump to search

The results showed that the combined therapy had superior renoprotective effect as evident by significant improvement in kidney function and renal architecture changes through rebalancing of inflammatory, fibrotic and apoptotic markers. Based on these outcomes, ADMSCs with exenatide were supposed to effectively ameliorate diabetic renal dysfunction compared to ADMSCs solely, presenting a promise therapy for diabetic nephropathy with further clinical studies warranted to validate this effect.Endoplasmic reticulum (ER) stress has been considered as a promising strategy in developing novel therapeutic agents for cardiovascular diseases through inhibiting cardiomyocyte apoptosis. Protocatechualdehyde (PCA) is a natural phenolic compound from medicinal plant Salvia miltiorrhiza with cardiomyocyte protection. However, the potential mechanism of PCA on cardiovascular ischemic injury is largely unexplored. Here, we found that PCA exerted markedly anti-apoptotic effect in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9c2 cells (Rat embryonic ventricular H9c2 cardiomyocytes), which was detected by 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH), Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) assays. PCA also obviously protected cardiomyocytes in myocardial fibrosis model of mice, which was determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. Transcriptomics coupled with bioinformatics analysis revealed a complex pharmacological signaling network especially for PCA-mediated ER stress on cardiomyocytes. Further mechanism study suggested that PCA suppressed ER stress via inhibiting protein kinase R-like ER kinase (PERK), inositol-requiring enzyme1α (IRE1α), and transcription factor 6α (ATF6α) signaling pathway through Western blot, DIOC6 and ER-Tracker Red staining, leading to a protective effect against ER stress-mediated cardiomyocyte apoptosis. Taken together, our observations suggest that PCA is a major component from Salvia miltiorrhiza against cardiovascular ischemic injury by suppressing ER stress-associated PERK, IRE1α and ATF6α signaling pathways.Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 μg/μl), luzindole (LUZ, 5 μg/μl) or the MT2-selective receptor drug 4-P-PDOT (5 μg/μl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 μg/μl, 1 μg/μl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.Lipopolysaccharide (LPS) induces myocardial dysfunction by damaging the mitochondrial structure in cardiomyocytes. Since low levels of carbon monoxide can confer cytoprotective effects against end-organ damage from endotoxic shock, we tested whether treatment with carbon monoxide-releasing molecule-2 (CORM-2) could ameliorate LPS-induced myocardial dysfunction in rats by maintaining the dynamic equilibrium between the mitochondrial fusion and fission processes. Cardiac function, myocardial histopathology, myocardial enzymes, and changes in myocardial mitochondrial function and mitochondrial fusion-fission protein expression were assessed in rats. The mitochondrial structure and morphology were studied by electron microscopy, and the expression levels of key proteins involved in the mitochondrial dynamics were assessed by Western blot assay. diABZI STING agonist Cardiac dysfunction and increased myocardial enzyme activity together with myocardial pathological damage, mitochondrial dysfunction, and impaired mitochondrial dynamics homeostasis were observed in the LPS-challenged septic rats. However, these observations were reversed by CORM-2, which effectively inhibited cardiac and mitochondrial damage in the LPS-challenged rats and improved the survival rate of the animals. In conclusion, CORM-2 regulates the LPS-induced imbalance of the dynamic mitochondrial fusion and fission processes, thereby effectively ameliorating the LPS-induced myocardial dysfunction and improving the survival of the rats.Ubiquitin (Ub) C-terminal hydrolase L1 (UCHL1) is a multifunctional protein that is expressed in neurons throughout brain at high levels. UCHL1 deletion is associated with axonal degeneration, progressive sensory motor ataxia, and premature death in mice. UCHL1 has been hypothesized to play a role in the pathogenesis of neurodegenerative diseases and recovery after neuronal injury. UCHL1 hydrolyzes Ub from polyubiquitinated (poly-Ub) proteins, but also may ligate Ub to select neuronal proteins, and interact with cytoskeletal proteins. These and other mechanisms have been hypothesized to underlie UCHL1's role in neurodegeneration and response to brain injury. A UCHL1 knockin mouse containing a C90A mutation (C90A) devoid of hydrolase activity was constructed. The C90A mouse did not develop the sensory and motor deficits, degeneration of the gracile nucleus and tract, or premature death as seen in UCHL1 deficient mice. C90A and wild type (WT) mice were subjected to the controlled cortical impact (CCI) model of rtant role in acute injury response after TBI.The multivariate concentric square field™ (MCSF) is a complex and ethologically relevant apparatus that is designed to measure several behavioral parameters within the same test session including risk-taking, risk-assessment, shelter-seeking (anxiety relieving), exploration, and general activity. While several studies have behaviorally and pharmacologically validated the use of the MCSF in adults, far fewer have used adolescents. Given the well-established link between adolescence and risk-taking, it is important to validate use of the MCSF in adolescence. The present study compared the effects of age, sex, and handling on behavioral categories in the MCSF. In addition, principal component analyses were used to compare the underlying behavioral components in adolescent and adult Sprague-Dawley rats. Results revealed that handling increased risk-taking and reduced shelter-seeking. Females were more exploratory than males, but no compelling age differences in risk-taking or risk-assessment were found. Principal component analyses revealed six major principal components for both adolescents and adults with the first and second components consisting mainly of center/center circle, risk-assessment, and shelter-seeking variables in adolescence, and general activity and center/center circle variables in adults.