Tetramethylpyrazine suppresses growth involving cancer of the colon cells inside vitro

From World News
Jump to navigation Jump to search

Finally, we present computer simulations of the CSs dynamics and an application of them to predict CO rotational excitation probabilities in the Li+ + CO reaction. CS results agree satisfactorily with experimental ones and encourage future applications in chemical dynamics, statistical mechanics, spectroscopy, nuclear physics, quantum coherence, and quantum computing.In this work, Gaussian process regression (GPR) for fitting a high-dimensional potential energy surface (PES) is revisited and implemented to construct the PES of OH + HO2 → O2 + H2O. Using mixed kernel function and optimized distribution of the training database, only ∼3 × 103 energy points are needed to approach convergence, which implies the power of GPR in saving lots of computational cost. Moreover, the convergence of the GPR PES is inspected, leading to discussions on the advantages of the GPR fitting approach. By the segmented strategy [Meng et al., J. Chem. Phys. 144, 154312 (2016)], a GPR PES with a fitting error of ∼21 meV is constructed using ∼4600 energy points at the CCSD(T)-F12a/aug-cc-pVTZ level. The rate coefficients are then computed through the ring-polymer molecular dynamics (RPMD) method. An agreement between the present RPMD calculations and the previous observations is found, implying the accuracy of the present calculations. Moreover, the unusual feature of the Arrhenius curve is interpreted by a coupled harmonic oscillator model [Q. Meng, J. Phys. Chem. A 122, 8320 (2018)] together with a simple kinetics model.Multireference methods are usually required for transition metal systems due to the partially filled d electrons. In this work, the single-reference equation-of-motion coupled-cluster method at the singles and doubles level for double ionization potentials (EOM-DIP-CCSD) is employed to calculate energies of states from the d8 configuration of late-transition metal atoms starting from a closed-shell reference. Its results are compared with those from the multireference Fock-space coupled-cluster method at the CCSD level (FSCCSD) for DIP from the same closed-shell reference. Both scalar-relativistic effects and spin-orbit coupling are considered in these calculations. Compared with all-electron FSCCSD results with four-component Dirac-Coulomb Hamiltonian, FSCCSD with relativistic effective core potentials can provide reasonable results, except for atoms with unstable reference. Excitation energies for states in the (n - 1)d8ns2 configuration are overestimated pronouncedly with these two methods, and this overestimation is more severe than those in the (n - 1)d9ns1 configuration. Error of EOM-CCSD on these excitation energies is generally larger than that of FSCCSD. On the other hand, relative energies of most of the states in the d8 configuration with respect to the lowest state in the same configuration are predicted reliably with EOM-DIP-CCSD, except for the 3P0 state of Hg2+ and states in Ir+. FSCCSD can provide reasonable relative energies for the several lowest states, while its error tends to be larger for higher states.This work revisits the fundamentals of thermodynamic perturbation theory for fluid mixtures. click here The choice of reference and governing assumptions can profoundly influence the accuracy of the perturbation theory. The statistical associating fluid theory for variable range interactions of the generic Mie form equation of state is used as a basis to evaluate three choices of hard-sphere reference fluids single component, additive mixture, and non-additive mixture. Binary mixtures of Lennard-Jones fluids are investigated, where the ratios of σ (the distance where the potential is zero) and the ratios of ϵ (the well depth) are varied. By comparing with Monte Carlo simulations and results from the literature, we gauge the accuracy of different theories. A perturbation theory with a single-component reference gives inaccurate predictions when the σ-ratio differs significantly from unity but is otherwise applicable. Non-additivity becomes relevant in phase-equilibrium calculations for fluids with high ϵ-ratios or when trbation theory based on these results is an important future work.The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.Liquid-vapor coexistence is calculated via molecular dynamics for a variety of parallelepiped shaped molecules. Models are constructed as an array of tangential hard spheres interacting with an attractive square-well potential. Each shape is formed by varying the number of spheres in their three sides. The initial density of the system is chosen close to the critical density of a SW fluid to obtain an equilibrated liquid-vapor coexistence curve by the process of spinodal decomposition. A pattern that relates the geometry of the molecular models and the existence or non-existence of a liquid-vapor orthobaric curve is shown.