The mechanism associated with MLLrearranged leukemogenesis and it is specific therapies
Microorganisms surrounding plant roots may benefit invasive species through enhanced mutualism or decreased antagonism, when compared to surrounding native species. We surveyed the rhizosphere soil microbiome of a prominent invasive plant, Phragmites australis, and its co-occurring native subspecies for evidence of microbial drivers of invasiveness. If the rhizosphere microbial community is important in driving plant invasions, we hypothesized that non-native Phragmites would cultivate a different microbiome from native Phragmites, containing fewer pathogens, more mutualists, or both. We surveyed populations of native and non-native Phragmites across Michigan and Ohio USA, and we described rhizosphere microbial communities using culture-independent next-generation sequencing. We found little evidence that native and non-native Phragmites cultivate distinct bacterial, fungal, or oomycete rhizosphere communities. Microbial community differences in our Michigan survey were not associated with plant lineage but were mainly driven by environmental factors, such as soil saturation and nutrient concentrations. Intensive sampling along transects consisting of dense monocultures of each lineage and mixed zones revealed bacterial community differences between lineages in dense monoculture, but not in mixture. We found no evidence of functional differences in the microbial communities surrounding each lineage. We extrapolate that the invasiveness of non-native Phragmites, when compared to its native congener, does not result from the differential cultivation of beneficial or antagonistic rhizosphere microorganisms.Consistent individual differences in behavior have been demonstrated for many animals, but there are few studies of consequences of such repeated behavior in the wild. We tested consistency in migration timing to and from the sea among anadromous Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta), using data from a study period of about 25 years, including more than 27,000 uniquely Carlin-tagged individuals that migrated to sea for feeding in the spring and returned to the river in late summer for up to 13 successive years. Consistency was found between individuals across time in timing of the seaward migration. Individuals migrating early during their first migration tended to migrate early the following years, and late migrants tended to migrate late. The same pattern was found also at ascent to freshwater. Hence, this study demonstrated that individual fish in nature can differ in behavior related to migration timing and that these differences can be consistent during their lifetime. Early migrants increased their mass more than late migrants and had a higher specific growth rate. Early migrating Arctic char, but not brown trout, experienced a longer life after the first migration to sea than late migrants. In both species, maturity occurred earlier in individuals that migrated early. For brown trout, but not for Arctic char, fecundity was significantly correlated to the timing of smolt migration. Hence, the repeatable individual variation in migration timing seemed to have ecological and fitness consequences in terms of growth, longevity, timing of maturity, and lifetime fecundity.Post-glacial colonization of lakes in Algonquin Park, Ontario, Canada resulted in food webs with cisco (Coregonus artedi sensu lato) and either Mysis diluviana or Chaoborus spp. as the dominant diel migrator. Mysis as prey, its diel movements and benthic occupancy, are hypothesized to be key elements of ecological opportunity for cisco diversity in the Laurentian Great Lakes. If correct, the hypothesis strongly implies that lakes with Mysis would have greater trophic niche size and drive greater adaptive radiation of cisco forms relative to lakes without Mysis. The dichotomy in diel migrator in Algonquin Park lakes was an opportunity to assess the isotopic niche size of cisco (δ15N and δ13C) and determine if niche size expands with Mysis presence. check details We found the presence of Mysis is necessary to expand isotopic niche size in our study lakes. The use of habitats not typically associated with the ancestral form of cisco (e.g., benthic habitats) and phenotypic diversity (blackfin and cisco) also continue to expand niche size in Mysis-based food webs. Partial ecological speciation based on a large niche space appears to be present in one lake (Cauchon Lake) where use of alternative habitats is the only real difference in cisco. The presence of blackfin expands niche space in Cedar and Radiant Lakes. This was not matched in Hogan Lake where niche space was relatively smaller with similar forms. Possible reasons for this discrepancy may be related to the asymmetric basin of Hogan Lake and whether the two forms overlap during cool and cold-water periods of the annual temperature cycle. By comparing trophic niche size among lakes with and without Mysis, we conclude that Mysis provides a key ecological opportunity for cisco diversity in our study lakes and likely more widely.Meta-analyses often encounter studies with incompletely reported variance measures (e.g., standard deviation values) or sample sizes, both needed to conduct weighted meta-analyses. Here, we first present a systematic literature survey on the frequency and treatment of missing data in published ecological meta-analyses showing that the majority of meta-analyses encountered incompletely reported studies. We then simulated meta-analysis data sets to investigate the performance of 14 options to treat or impute missing SDs and/or SSs. Performance was thereby assessed using results from fully informed weighted analyses on (hypothetically) complete data sets. We show that the omission of incompletely reported studies is not a viable solution. Unweighted and sample size-based variance approximation can yield unbiased grand means if effect sizes are independent of their corresponding SDs and SSs. The performance of different imputation methods depends on the structure of the meta-analysis data set, especially in the case of correlated effect sizes and standard deviations or sample sizes. In a best-case scenario, which assumes that SDs and/or SSs are both missing at random and are unrelated to effect sizes, our simulations show that the imputation of up to 90% of missing data still yields grand means and confidence intervals that are similar to those obtained with fully informed weighted analyses. We conclude that multiple imputation of missing variance measures and sample sizes could help overcome the problem of incompletely reported primary studies, not only in the field of ecological meta-analyses. Still, caution must be exercised in consideration of potential correlations and pattern of missingness.