The result of Psychological Hotwash in Resilience involving Crisis Medical Services Personnel
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self‑renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC‑seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC‑based therapy.Diabetic nephropathy (DN) is a predominant cause of end‑stage renal disease. The impairment of the autophagy of human renal tubular epithelial cells (HK‑2 cells) is involved in the pathogenic mechanisms of DN. Sirtuin (Sirt)3 regulates the scavenging of damaged organelles and maintains energy balance. learn more The present study aimed to examine the protective effects of Sirt3 on HK‑2 cells stimulated by high glucose (HG). HK‑2 cells were cultured in normal glucose (NG), HG or hyperosmotic medium. The viability of the HK‑2 cells was detected using a Cell Counting Kit‑8 assay. The expression and localization of Sirt3 were detected via immunofluorescence. Following transfection with an overexpression plasmid, the expression levels of key components in the Notch homolog 1 (Notch‑1)/hairy and enhancer of split‑1 (Hes‑1) pathway and those of the autophagy‑related proteins, Beclin‑1, LC‑3II and p62, were measured by western blot analysis and reverse transcription‑quantitative PCR (RT‑qPCR). As the Notch‑1/Hes‑1 pathway was iy, via the downregulation of Notch‑1/Hes‑1.Psoralen (PSO) exerts anti‑inflammatory pharmacological effects and plays an important role in a variety of inflammatory diseases. However, the effects of PSO with allergic rhinitis (AR) are yet to be reported. In the present study, an in vitro AR model was generated by inducing JME/CF15 human nasal epithelial cells with IL‑13, after which MTT was used to assess the cytotoxicity of PSO. The expression levels of inflammatory cytokines (granulocyte‑macrophage colony‑stimulating factor and Eotaxin) were determined by ELISA. Furthermore, the expression of inflammatory IL‑6 and ‑8, as well as mucin 5AC, was assessed by reverse transcription‑quantitative PCR and western blotting, and cellular reactive oxygen species were detected using a 2',7'‑dichlorodihydrofluorescein diacetate fluorescent probe. Western blotting was also used to detect the expression and phosphorylation of c‑Fos and c‑Jun in the activator protein 1 (AP‑1) pathway, as well as the expression of cystatin‑SN (CST1). PSO inhibited the inflammatory response and mucus production in IL‑13‑induced JME/CF15 cells. Furthermore, the levels of c‑Fos and c‑Jun phosphorylation in the AP‑1 pathway were decreased in IL‑13‑induced JME/CF15 cells following PSO treatment. The expression of pathway proteins was activated by the addition of PMA, an AP‑1 pathway activator, which concurrently reversed the inhibitory effects of PSO on the inflammatory response and mucus formation. The addition of an AP‑1 inhibitor (SP600125) further inhibited pathway activity, and IL‑13‑induced inflammation and mucus formation was restored. In conclusion, PSO regulates the expression of CST1 by inhibiting the AP‑1 pathway, thus suppressing the IL‑13‑induced inflammatory response and mucus production in nasal mucosal epithelial cells.Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the scratch-wound assay data shown in Fig. 3A and Transwell cell migration data shown in Figs. 3B and 6B were strikingly similar to data appearing in different form in other articles by different authors. Owing to the fact that the contentious data in the above article had already been published elsewhere, or were already under consideration for publication, prior to its submission to International Journal of Oncology, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive any reply. The Editor apologizes to the readership for any inconvenience caused. [the original article was published in International Journal of Oncology 48 541-550, 2016; DOI 10.3892/ijo.2015.3267].Studies have found that C‑C motif chemokine ligand 20 (CCL20)/C‑C motif chemokine receptor 6 (CCR6)/notch receptor 1 (Notch1) signaling serves an important role in various diseases, but its role and mechanism in ovarian cancer remains to be elucidated. The aim of the present study was to investigate the underlying mechanism of CCL20/CCR6/Notch1 signaling in paclitaxel (PTX) resistance of a CD44+CD117+ subgroup of cells in ovarian cancer. The CD44+CD117+ cells were isolated from SKOV3 cells, followed by determination of the PTX resistance and the CCR6/Notch1 axis. Notch1 was silenced in the CD44+CD117+ subgroup and these cells were treated with CCL20, followed by examination of PTX resistance and the CCR6/Notch1 axis. Furthermore, in nude mice, CD44+CD117+ and CD44‑CD117‑ cells were used to establish the xenograft model and cells were treated with PTX and/or CCL20, followed by proliferation, apoptosis, reactive oxygen species (ROS) and mechanism analyses. Higher expression levels of Oct4, CCR6, Notch1 and ATP binding cassette subfamily G member 1 (ABCG1), increased sphere formation ability, IC50 and proliferative ability, as well as lower ROS levels and apoptosis were observed in CD44+CD117+ cells compared with the CD44‑CD117‑ cells.