Unravelling your impacts associated with westernstyle diets on brain belly microbiota and knowledge
These developmental responses led to substantial increases in biomass yields of 56-207% and potable water controls revealed the nitrogen load to be necessary for the high productivity of 28-40 t ha-1 yr-1 in wastewater irrigated trees. Collectively, this study suggests phytofiltration plantations could treat primary effluent municipal wastewater at volumes of at least 19 million litres per hectare and benefit from increased yields of sustainable biomass over a two-year coppice cycle. Added-value cultivation practices, such as phytofiltration, have the potential to mitigate negative local and global environmental impact of wastewater treatment while providing valuable services and sustainable bioproducts.Radiocarbon (14C) is broadly used in oceanography to determine water ages, trace water circulation, and develop sediment- and sclerochronologies. find more These applications require an accurate knowledge of marine 14C levels, which have been largely perturbed by human activities. Globally during the last century the above-ground nuclear weapon testings have been the primary cause of the increased atmospheric and marine 14C. However, other anthropogenic sources may have caused important regional deviations from the bomb pulse. For the last 70 years European nuclear fuel reprocessing plants have been major contributors of 14C to air and oceans, yet, their regional impact on surrounding marine 14C has been largely overlooked. Here we use a collection of bivalve shells of known capture date and age collected from various locations, including the North Sea, the Irish Sea, Norway, and the Bay of Biscay to reconstruct the sea surface 14C over the last five decades. The measured 14C values for the period 1969-2019, reported in fraction modern, ranged from 1.1 to 1.6 in coastal waters of the Netherlands and from 1.2 to 3.2 along the coast of the UK, indicating significantly higher levels of 14C than those expected for the marine bomb pulse (0.950-1.150). The 14C peaks revealed by the shells coincide with the increase of liquid 14C releases reported from the reprocessing plants of La Hague into the English Channel, and from Sellafield into the Irish Sea. Conversely, the shells from Norway and Spain showed 14C values close to the range of the global marine bomb pulse. The observed large spatial and temporal differences in sea surface 14C show that 14C dating and tracing studies could become problematic in the English Channel, Irish Sea and North Sea for the time period covering the discharge of liquid 14C from the reprocessing plants.This study was performed to evaluate the use of white rot fungus, Pleurotus pulmonarius, to treat polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in contaminated soil using solid state fermentation (SSF). The soil was collected from a long-closed pentachlorophenol plant in southern Taiwan. The non-sterilized soil with a total PCDD/F concentration of 14,000 ± 2400 ng I-TEQ kg-1 was mixed directly with the solid fungal inocula at dry w/w ratio of 11.4 (ratio-adjusted test) and incubated at 26 ± 2 °C in a controlled environment. The highest PCDD/F decomposition was observed during the mycelium colonization. Pearson correlation coefficient (r) studied during this period (35 days) indicated that laccase had no significant correlation (r = -0.53), while manganese peroxidase had a strong positive correlation (r = 0.88) with PCDD/F decomposition efficiency. After 72 days, the more toxic congeners, tetra- and penta-CDD/Fs were removed to non-detectable levels. Meanwhile, the removal efficiencies of hexa-, hepta-, and octa-CDD/Fs were >80%, >97%, and >90%, respectively. The simultaneous degradation of low and high chlorinated DD/Fs suggested that overall removal was nonspecific. The overall PCDD/F removal was 96%, and the residual concentration (276 ng I-TEQ kg-1) was below the regulatory control limit (1000 ng I-TEQ kg-1). In conclusion, this study shows that P. pulmonarius via SSF can successfully remediate the PCDD/F-contaminated field soil. Furthermore, this SSF technique overcame the well-known intractability of PCDD/F biodegradation in non-sterilized soil, making it promising for actual field application.The use of synthetic pesticides in agriculture is increasingly debated. However, few studies have compared the impact of synthetic pesticides and alternative biopesticides on non-target soil microorganisms playing a central role in soil functioning. We conducted a mesocosm experiment and used high-throughput amplicon sequencing to test the impact of a fungal biopesticide and a synthetic fungicide on the diversity, the taxonomic and functional compositions, and co-occurrence patterns of soil bacterial, fungal and protist communities. Neither the synthetic pesticide nor the biopesticide had a significant effect on microbial α-diversity. However, both types of pesticides decreased the complexity of the soil microbial network. The two pesticides had contrasting impacts on the composition of microbial communities and the identity of key taxa as revealed by microbial network analyses. The biopesticide impacted keystone taxa that structured the soil microbial network. The synthetic pesticide modified biotic interactions favouring taxa that are less efficient at degrading organic compounds. This suggests that the biopesticides and the synthetic pesticide have different impact on soil functioning. Altogether, our study shows that pest management products may have functionally significant impacts on the soil microbiome even if microbial α-diversity is unaffected. It also illustrates the potential of high-throughput sequencing analyses to improve the ecotoxicological risk assessment of pesticides on non-target soil microorganisms.The chlorfenapyr residues in the entire tea chain, i.e., in tea planting, tea processing, and tea brewing, were systematically investigated. The degradation rate constants of chlorfenapyr in the tea plants ranged from 0.2460 to 0.2870 with the half-life of 2.4-3.0 days, and 87.5-89.9% of the chlorfenapyr in tea shoots dissipated in the interval of 7 days. In the processing process of both black tea and green tea, the chlorfenapyr residue decreased by 59.1-67.6% compared with the residue in tea shoots due to high vapor pressure (1.2 × 10-2 mPa 25 °C), and drying was the key step that dissipated the chlorfenapyr. A low leaching efficiency of 2.2-3.4% from tea leaves to tea infusion, resulted in low water solubility (0.14 mg L-1 25 °C), indicated that >90% of the residual chlorfenapyr was eliminated before the intake of tea infusion. On the basis of these results, an extremely large proportion of the chlorfenapyr deposited on tea shoots was degraded during tea planting, tea processing, and tea brewing, and the health risk was reduced primarily in the first and the last step rather than during tea processing.