Venus Main Quest Concept Any Decadal Questionnaire Research
The removal efficacies of other homologues achieved with SCR are consistently high (96-100%). Dominances of Mono-to Tri-CNs in scrubbing liquid collected from WS and higher removal efficacies of these homologues achieved with WS + ESP compared with ESP alone indicate that WS can capture low chlorinated PCNs to some extent. The results suggest that CY + SDA + ACI + BH should be equipped in MWI for effective removal of PCNs, while ESP, WS and SCR should be utilized with precaution to eliminate PCNs formation and enhance the PCNs removal efficiency. Despite frequent detection of atrazine (ATZ) and its degradates (including hydroxyatrazine, ATZ-OH; deethylatrazine, DEA; deisopropylatrazine, DIA; and deethyldeisopropylatrazine, DACT) in a variety of water bodies, documentation of their occurrence and distribution in tap water in China is still scarce. A nationwide survey about ATZ and its degradates (ATZs) in tap water from 31 provinces in 7 regions of mainland China and Hong Kong was conducted during June 2019. At least one of the analytes was found in all the water samples (n = 884). The median sum concentrations of ATZs (ΣATZs) was 21.0 ng/L (range 0.02 ng/L-3.04 μg/L). The predominant compounds of ATZs in tap water were ATZ and DEA, with a detection frequency of 99.5% and 98.0%, respectively, followed by ATZ-OH (87.3%), DACT (84.0%), and DIA (78.1%). Significant regional variations (p less then 0.05) were found in the concentrations of ATZs in tap water, and the highest concentration of ΣATZs (median 254 ng/L, range 0.44 ng/L-3.04 μg/L) was found in Northeastern China, followed by Eastern (37.2 ng/L, 0.02-706 ng/L), Northern (30.2 ng/L, 0.04-317 ng/L), Central (29.3 ng/L, 0.04-256 ng/L), Southern (25.0 ng/L, 0.04-297 ng/L), Southwestern (17.2 ng/L, 0.02-388 ng/L), and Northwestern China (3.22 ng/L, 0.06-214 ng/L). The level of ΣATZs in groundwater from rural area of China was about 1/3 of that found in tap water. ATZs cannot be removed by boiling tap water. The highest estimated daily intake of ΣATZs (248 ng/kg-body weight/day) was found in the infant population of Changchun, Jilin, Northeastern China. 129I released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has been observed in the atmospheric, terrestrial and oceanic environments, and it also entered the marine sediments via dispersion by sea water movement and deposition around Japan. However, there have been few studies of marine sediment cores in contrast to the large number of studies on seawater. In this work, a sediment core collected near FDNPP was analyzed for 129I. It is observed that the 129I/127I atomic ratios in this sediment core are comparable to those in the seawater and sediments collected from offshore Fukushima after the accident, but 2 orders of magnitude higher than those in seawater in this region before the accident, suggesting the significant amount of 129I has been transferred and incorporated to the offshore shallow sediments. The difference in environmental behavior between 129I and 137Cs is discussed based on their depth distributions in the sediment core in comparison with the grain size distribution of sediments. The peak concentrations of iodine isotopes were found in a relatively deeper layer than radiocesium. Radiocesium follows the distribution of fine grains in the sediment core, implying its high association to fine grains. Contaminated mining sediment may cause environmental and human health risk due to potentially hazardous elements (PHEs) leaching into groundwater, especially under very acid (pH ≤ 3) conditions. The capability of Chinese loess to immobilise and retain copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) from element contaminated mining sediment was explored by a column leaching experiment. Results showed that loess could effectively reduce Cu geomobility, and their leachate concentrations were lower than the quality standard (1.0 mg L-1) for ground water in China. The sierozem showed strong adsorption for Zn, Cd and Pb. The geomobility of Cu, Zn, Cd and Pb were affected by pH, electrical conductivity, organic matter and carbonate content of sediment/loess-amended sediment and sierozem. The long-term leaching of PHEs in loess-amended sediment may pose a potential risk to sierozem and groundwater in the region. This study highlights the need to develop a remediation technique to minimise the concentration level of hazardous elements in the mining sediment. Estuaries are transitional water systems where the hydrodynamic processes governing water circulation actively influence suspended particle transport and deposition. In the estuarine mixing zone, the strong physico-chemical gradients resulting from the interaction between river freshwater and seawater may affect the distribution, mobility and fate of several potentially toxic compounds, among which trace elements are of major concern. Knowledge regarding the partitioning behaviour of trace elements would provide essential scientific support for the environmental management of estuaries. In this study, trace element occurrence and phase partitioning among suspended particulate matter, colloidal material and the truly dissolved fraction were investigated in the main Italian and Slovenian estuarine environments of the Gulf of Trieste (northern Adriatic Sea). Further information about the water quality at the river mouths was provided and, in addition to the traditional evaluation of single chemical parameters, a multi-way principal component analysis was employed in order to depict disparities among sampling sites, water layers and seasonal conditions with the final aim of evaluating trace element phase partitioning. Results indicated that the suspended particulate matter acts as the main effective vehicle for Cu, Cr, Fe, Ni and Pb, and enhanced adsorption processes resulted in elevated partitioning coefficients, especially for Fe and Pb. Although disparities occurred between sampling sites and seasons, trace elements showing affinity for the solid phase appeared to be partially bound to the colloidal material. https://www.selleckchem.com/products/baricitinib-ly3009104.html Conversely, As and Cs prevailed in the truly dissolved fraction, especially in seawater and showed scarce affinity for both the suspended particles and colloids.